Том 54 № 4
Постійне посилання зібрання
Переглянути
Перегляд Том 54 № 4 за Назва
Зараз показуємо 1 - 6 з 6
Результатів на сторінці
Налаштування сортування
- ДокументThe Joule-Thomson Effect for Refrigerants with Dopants of the Fullerenes and Carbon Nanotubes(2019) М. Petrenko, S. Artemenko, D. NikitinThe importance of thermodynamic and phase behavior of working fluids embedded with nanostructured materials is fundamental to new nanotechnology applications. The fullerenes (C60) and carbon nanotubes (CNT) adding to refrigerants change their thermodynamic properties the Joule – Thomson effect such as dislocation of critical point, gas – liquid equilibria shift at alias. Algorithm of refrigerant thermodynamic property calculations based on the NIST (National Institute of Standards and Technologies) equation of state at different carbon nanotube concentrations is proposed. Thermodynamic properties of carbon dioxide in the C60 and CNT presence are given. Considering the extremely large number of different both nanoparticle types and reference fluids, it is obvious that there is need for developing theoretically sound methods of the prompt estimation thermodynamic properties and phase equilibria for emerging working media. The effect of nanoparticles on the critical point shift for classical fluids doped by nanoparticles is examined. The regular and singular parts of thermodynamic surface of reference fluid and nanofluid (volume nanoparticle concentration < 5%) are suggested to coincide in the reduced form. The shift of critical point for nanoliquids of industrial interest is theoretically predicted. Results of calculations of phase equilibria for some nanofluids are described.
- ДокументАналітична модель інтелектуальної надбудови NGN з урахуванням самоподібності трафіку(2019) Н. О. Князєва, С. В. Шестопалов, Т. В. КунупЗ появою мультисервісних мереж з’явилися інтелектуальні сервіси (INS) і, відповідно, новий тип трафіку. Протягом довгого часу вважалося, що мережний трафік відповідає пуасонівським процесам, але подальші дослідження довели, що в трафіку деяких мереж наявний ефект самоподібності. Через властивості самоподібного трафіку традиційні методи розрахунку характеристик функціонування мереж дають занадто оптимістичні результати і призводять до недооцінки реального навантаження. Виникає актуальне питання визначення наявності ефекту самоподібності трафіку, що містить заявки на INS, а також урахування цього ефекту при формуванні аналітичної моделі інтелектуальної надбудови NGN (Next Generation Network). Саме цим питанням присвячена дана робота. На основі аналізу існуючих методів розрахунку показника Херста, що надає можливість визначити характер трафіку, обрано R/S метод, оскільки його використання дозволяє аналізувати велику кількість даних, а також не містить занадто великого обсягу обчислень. Даний метод реалізований за допомогою програми AutoSignal. Виходячи з аналізу отриманих результатів можна стверджувати, що трафік, що містить заявки на INS – це самоподібний процес. Ефект самоподібності проявляється в широкому діапазоні часу – від декількох годин до року. Проведені дослідження характеру трафіку визначили можливість вирішення актуальної задачі – розробки аналітичної моделі інтелектуальної надбудови NGN, яка відповідає за управління наданням INS, з урахуванням самоподібності трафіку. Для побудови аналітичної моделі інтелектуальної надбудови було використано апарат теорії масового обслуговування. Запропонована аналітична модель інтелектуальної надбудови, яка ураховує самоподібність потоку заявок на INS, надає можливість визначити потрібні мережні ресурси для забезпечення необхідного значення ефективності управління наданням INS.
- ДокументДослідження впливу ефекту «теплової хвилі» на холодопродуктивність кондиціонера(2019) Н.В. ЖихарєваДля вирішення проблеми енергозбереження при обов'язковому і строгому дотриманні нормативних вимог до повітря, досліджений вплив ефекту «теплової хвилі» на холодопродуктивність кондиціонера. За допомогою розробленої методики нестаціонарного розрахунку теплоприпливів, варіюючи тепловим опіром шарів стіни і їх тепловою інерцією, визначений оптимальний час запізнювання надходження максимального теплового потоку від внутрішньої поверхні стіни в приміщення від часу максимуму падіння сонячного випромінювання на зовнішню поверхню цієї стіни та вирішенні дві задачі: оптимального конструювання огорож з врахуванням часів пікових значень надходження тепла; зменшення абсолютної величини максимальних і середньодобових значень тепло припливів через стіни. Результати математичного моделювання дозволяють визначити вплив зміни сонячної радіації на поверхню, зміну температури зовнішнього та внутрішнього шару огороджень, зміну тепло припливів від людей, обладнання та інше та при врахуванні ефекту «теплової хвилі» визначити оптимальну холодопродуктивність кондиціонера. Результати математичного моделювання дозволяють визначити вплив зміни сонячної радіації на поверхню, зміну температури зовнішнього та внутрішнього шару огороджень, зміну тепло припливів від людей, обладнання та інше та при врахуванні ефекту «теплової хвилі» визначити оптимальну холодопродуктивність кондиціонера.
- ДокументМетод рециркуляції відпрацьованих газів суднових дизелів для зме-ншення їх токсичності(2019) Р.М. Радченко, М.А. ПирисунькоВ даний час має місце інтенсивне посилення норм на токсичні викиди відпрацьованих газів суднових дизелів при плаванні суден в прибережних морських районах і на внутрішніх водних шляхах. Постійне зростання числа суден призводить до збільшення об’єму палива, що спалюється ними, а отже до збільшення викидів токсичних компонентів з відпрацьованими газами. В роботі проаналізовано зниження шкідливих викидів судновими дизелями за рахунок методу рециркуляції відпрацьованих газів.
- ДокументТеплозахист будинків і споруд системами теплолокалізаціі(2019) Г. В. ЛужанськaЗ кожним роком проблема енергозбереження в сучасному світі стає все більш і більш актуальною. Енергозбереження передбачає економне витрачання енергетичних ресурсів, тому що природні ресурси є вичерпними, дорого коштують, а їх видобуток в більшості випадків завдає шкоди навколишньому середовищу. Системи життєзабезпечення для комфортного перебування людей в будівлях та спорудах різного призначення є одними з найбільш значущих споживачів паливно-енергетичних ресурсів. Можливостей для розвитку енергозберігаючих технологій у даній області існує безліч. Один з важливих напрямків у економії енергетичних ресурсів при експлуатації будівель - це вдосконалення систем захисту тепла будівель та споруд комунально-промислового сектора. Актуальним є реалізація теплозахисту будівель при проривах холодного повітря в опалювальних приміщеннях при відкриванні зовнішніх дверей та воріт. При дослідженні роботи теплолокалізуючого пристрою плоский неізотермічний струмінь, що виходить із прямокутного стального насадку, розташованого в площині відкритого зовнішнього отвіра, розбився на безліч маленьких струменів, які поширюються в даному напрямку, витікають з однакових по розміру розтинів з однаковою швидкістю, відокремлені друг від одного на відстані, рівною ширини щелі Була визначена швидкість повітряного потоку, отримані графічні залежності. За допомогою математичного моделювання отримана адекватна картина фізичного процесу витікання. На початковій ділянці відбулося злиття цих струменів в єдиний повітряний потік, і як наслідок, не виникає проникнення холодного зовнішнього повітря в опалювальні приміщення будівель і споруд, тим самим зменшуючи теплову споживану потужність теплолокалізуючого пристрою. В результаті відбувається значне зниження затрат енергетичних ресурсів на систему теплопостачання, поліпшується мікроклімат в приміщенні, збільшується ефективність роботи засобів теплозахисту будівель і споруд.
- ДокументФакторы интенсификации кипения в двухфазных системах терморегулирования(2019) Б.В. КосойРабота посвящена экспериментальному и теоретическому решению важной научно-технической задачи интенсификации теплообмена в микроструктурных элементах систем терморегулирования с целью повышения их теплотехнической эффективности, надежности, уменьшения массы и габаритов. Рассмотрены основные структурные характеристики капиллярно-пористых тел, такие как эффективная пористость, кривая распределения пор по радиусу, проницаемость и т.д. Определены основные механизмы переноса массы вещества в пористой среде. Выполнен анализ особенностей модельных представлений для процессов кипения жидкости на пористых и на развитых поверхностях теплообмена и обоснованы физические факторы, позволяющие обеспечить высокие тепловые потоки при малых разностях температур. Реализованный комплекс экспериментальных и расчётных исследований характеристик процессов двухфазного теплообмена при кипении в микроканальных тонкопленочных испарителях позволил определить специфику влияния структуры поверхности на интенсивность процесса теплоотдачи, установлены зависимости их теплопередающей способности от формы поперечных сечений и соотношений между глубиной и шириной прямоугольных микроканалов. Проведён теоретический анализ особенностей гидродинамических и теплообменных процессов, протекающих в микроструктурах, продемонстрировавший возможности интенсификации теплообмена при кипении путём оптимизации теплотехнических характеристик микроструктуры и использования гибридных микроструктур различной пористости. Установлено, что процесс теплообмена при испарении и кипении жидкостей в капиллярно-пористых телах и на развитых поверхностях, покрытых сетью капиллярных каналов, обладает рядом особенностей по сравнению с кипением жидкости в большом объеме над гладкой поверхностью, а также в каналах и трубах с гладкими стенками. Пористая структура и капиллярные канавки интенсифицируют процесс теплообмена в широком диапазоне тепловых потоков и позволяют производить плавный переход от режима испарения к режиму кипения. Процесс наступления кризиса кипения сглаживается, при этом кривая кипения не имеет ярко выраженных максимумов. Покрытие пористыми структурами или микроканалами поверхности теплообмена с целью интенсификации процесса особенно эффективно для криогенных жидкостей (гелий, водород и т. д.), а также в низкотемпературных тепловых трубах и термосифонах.