Том 54 № 4

Постійне посилання зібрання

Переглянути

Нові надходження

Зараз показуємо 1 - 5 з 11
  • Документ
    Рівняння стану конденсованого метану при високих тисках
    (2019) О. С. Бодюл, Л. М. Якуб
    В роботі запропоновано теоретичне рівняння стану рідкого метану, побудоване в рамках теорії збурення, де в якості нульового наближення виступає флюїд Ленарда-Джонса, а в якості потенціалу збурення – октуполь-октупольна взаємодія молекул метану. Рівняння стану рідкого метану дозволяє описати його термодинамічні властивості на лінії плавлення і передбачити їх з достатньою точністю в області високого тиску, де практично відсутні експериментальні дані. Термодинамічні властивості рідкого метану розраховані  в широкому діапазоні температур (100-300 К) і тисків (1-1000 МПа). Для розрахунку було задано лише три параметри: два параметра потенціалу Ленарда-Джонса і октупольний момент молекули метану. Рівняння стану метану внесено в автоматизовану систему розрахунку теплофізичних властивостей речовин «ThermoPro-5». Наведено результати розрахунку густини, ентальпії, ентропії, коефіцієнта теплового розширення, стисливості і теплоємності. Можливості запропонованого теоретичного рівняння стану, що не залучає експериментальних даних, а також оцінки точності отриманих даних, дозволяють значно розширити область дослідження рідкого метану до високих тисків понад 1000 МПа.
  • Документ
    Метод рециркуляції відпрацьованих газів суднових дизелів для зме-ншення їх токсичності
    (2019) Р.М. Радченко, М.А. Пирисунько
    В даний час має місце інтенсивне посилення норм на токсичні викиди відпрацьованих газів суднових дизелів при плаванні суден в прибережних морських районах і на внутрішніх водних шляхах. Постійне зростання числа суден призводить до збільшення об’єму палива, що спалюється ними, а отже до збільшення викидів токсичних компонентів з відпрацьованими газами. В роботі проаналізовано зниження шкідливих викидів судновими дизелями за рахунок методу рециркуляції відпрацьованих газів.
  • Документ
    Факторы интенсификации кипения в двухфазных системах терморегулирования
    (2019) Б.В. Косой
    Работа посвящена экспериментальному и теоретическому решению важной научно-технической задачи интенсификации теплообмена в микроструктурных элементах систем терморегулирования с целью повышения их теплотехнической эффективности, надежности, уменьшения массы и габаритов. Рассмотрены основные структурные характеристики капиллярно-пористых тел, такие как эффективная пористость, кривая распределения пор по радиусу, проницаемость и т.д. Определены основные механизмы переноса массы вещества в пористой среде. Выполнен анализ особенностей модельных представлений для процессов кипения жидкости на пористых и на развитых поверхностях теплообмена и обоснованы физические факторы, позволяющие обеспечить высокие тепловые потоки при малых разностях температур. Реализованный комплекс экспериментальных и расчётных исследований характеристик процессов двухфазного теплообмена при кипении в микроканальных тонкопленочных испарителях позволил определить специфику влияния структуры поверхности на интенсивность процесса теплоотдачи, установлены зависимости их теплопередающей способности от формы поперечных сечений и соотношений между глубиной и шириной прямоугольных микроканалов. Проведён теоретический анализ особенностей гидродинамических и теплообменных процессов, протекающих в микроструктурах, продемонстрировавший возможности интенсификации теплообмена при кипении путём оптимизации теплотехнических характеристик микроструктуры и использования гибридных микроструктур различной пористости. Установлено, что процесс теплообмена при испарении и кипении жидкостей в капиллярно-пористых телах и на развитых поверхностях, покрытых сетью капиллярных каналов, обладает рядом особенностей по сравнению с кипением жидкости в большом объеме над гладкой поверхностью, а также в каналах и трубах с гладкими стенками. Пористая структура и капиллярные канавки интенсифицируют процесс теплообмена в широком диапазоне тепловых потоков и позволяют производить плавный переход от режима испарения к режиму кипения. Процесс наступления кризиса кипения сглаживается, при этом кривая кипения не имеет ярко выраженных максимумов. Покрытие пористыми структурами или микроканалами поверхности теплообмена с целью интенсификации процесса особенно эффективно для криогенных жидкостей (гелий, водород и т. д.), а также в низкотемпературных тепловых трубах и термосифонах.
  • Документ
    Аналітична модель інтелектуальної надбудови NGN з урахуванням самоподібності трафіку
    (2019) Н. О. Князєва, С. В. Шестопалов, Т. В. Кунуп
    З появою мультисервісних мереж з’явилися інтелектуальні сервіси (INS) і, відповідно, новий тип трафіку. Протягом довгого часу вважалося, що мережний трафік відповідає пуасонівським процесам, але подальші дослідження довели, що в трафіку деяких мереж наявний ефект самоподібності. Через властивості самоподібного трафіку традиційні методи розрахунку характеристик функціонування мереж дають занадто оптимістичні результати і призводять до недооцінки реального навантаження. Виникає актуальне питання визначення наявності ефекту самоподібності трафіку, що містить заявки на INS, а також урахування цього ефекту при формуванні аналітичної моделі інтелектуальної надбудови NGN (Next Generation Network). Саме цим питанням присвячена дана робота. На основі аналізу існуючих методів розрахунку показника Херста, що надає можливість визначити характер трафіку, обрано R/S метод, оскільки його використання дозволяє аналізувати велику кількість даних, а також не містить занадто великого обсягу обчислень. Даний метод реалізований за допомогою програми AutoSignal. Виходячи з аналізу отриманих результатів можна стверджувати, що трафік, що містить заявки на INS – це самоподібний процес. Ефект самоподібності проявляється в широкому діапазоні часу – від декількох годин до року. Проведені дослідження характеру трафіку  визначили можливість вирішення  актуальної задачі – розробки аналітичної моделі інтелектуальної надбудови NGN, яка відповідає за управління наданням INS, з урахуванням самоподібності трафіку. Для побудови аналітичної моделі інтелектуальної надбудови було використано апарат теорії масового обслуговування. Запропонована аналітична модель інтелектуальної надбудови, яка  ураховує самоподібність потоку заявок на INS, надає можливість визначити потрібні мережні ресурси для забезпечення необхідного значення ефективності управління наданням INS.
  • Документ
    Дослідження технології приготування робочих тіл парокомпресійних холодильних систем з добавками наночастинок TiO2
    (2019) О.Я. Хлієва, Т.В. Лук'янова, Ю.В. Семенюк, В.П. Желєзний, С.Г. Корнієвич, О.Ю. Мельник
    У роботі розглянуто підходи до приготування робочих тіл парокомпресійних холодильних систем з добавками наночастинок оксидів металів - нанохолодоагентів. Показано, що до сих пір не розроблено технології приготування агрегативно стабільних нанохолодоагентів. Як об'єкт дослідження для апробації різних технологій приготування нанохолодоагенту було обрано холодоагент R141b, як добавка - наночастинки TiO2 двох виробників і різні за своєю природою поверхнево-активні речовини (ПАР). Критерієм, що визначає якість отриманих нанофлюїдів, був середній розмір  наночастинок у рідині, який визначався методом спектротурбідіметрії. Наведено результати експериментального дослідження впливу способу і тривалості диспергування наночастинок, а також добавок різних ПАР на розмір наночастинок в отриманих нанохолодоагентах. Наводяться рекомендації щодо підвищення колоїдної стабільності диспергованих наночастинок і зниження їхнього розміру в нанохолодоагентах, перспективних для застосування в холодильних системах.