MODEL-ORIENTED METHOD OF DESIGN IMPLEMENTATION WHEN CREATING DIGITAL FILTERS

Ескіз недоступний
Дата
2017
Назва журналу
Номер ISSN
Назва тому
Видавець
Анотація
This article discusses the example of model-oriented method of design and development of digital low-pass filters (LPF) for automatic control systems (ACS). Typically, high frequency noise and disturbance attenuation is carried out by analogue LPF. However, technical implementation of analogue filters higher than the second order arouse certain difficulties related with the need of precise passive components ratings selection (resistors, capacitors). If the noise and disturbances spectral composition is known, it is possible to build digital LPF with the Nyquist frequency greater than the maximum frequency in the noise spectrum. Such possibility has appeared because of cheap, energy-efficient, high-speed 32-bit microcontrollers market entry. They have analogue signals sampling rate of 30 kHz and above. The traditional approach using the “manual” method of filter parameters calculation, obtaining their recurrence expressions and further program implementation requires high qualification and a lot of time consumption from the developer. An alternative to this approach is the model-oriented method of design (MOMD) in MatLab environment when in the one environment the design of digital LPF, verificaton of its performance as a part of the ACS, generation and compilation of program codes for selected microcontroller family take place. MOMD can also be used in the designs of bandpass and bandstop filters for adaptive control systems or systems of technical diagnostics. If during the commissioning or the operation of ACS there is a need in digital LPF parameters change then this operation can be performed within half an hour. MOMD technology allows to significantly reduce the time for developing a specific product without loss of quality in its design ‘cause of extensive possibilities of MatLab development environment.
Опис
Ключові слова
Бібліографічний опис
Зібрання