Переглянути
Нові надходження
Зараз показуємо 1 - 5 з 9
- ДокументПорівняння ефективності охолодження повітря на вході газотурбінного двигуна в умовах помірного і субтропічного клімату(2019) А. М. Радченко, Я. Зонмін, С. А. Кантор, Б. С. ПортнойПроаналізовано охолодження повітря на вході газотурбінного двигуна при змінних упродовж року кліматичних умовах експлуатації. Запропоновано для охолодження повітря застосування тепловикористовуючих холодильних машин, що використовують для отримання холоду теплоту відпрацьованих газів газотурбінного двигуна. Досліджено ефективність охолодження повітря на вході газотурбінного двигуна в абсорбційній бромистолітієвій холодильній машині до температури 15ºС та у двоступінчастій абсорбційно-ежекторній холодильній машині до 10ºС. Хладонова ежекторна холодильна машина вибрана як конструктивно найбільш проста і надійна в експлуатації. При цьому абсорбційна бромистолітієва холодильна машина використовується в якості першого високотемпературного ступеня попереднього охолодження зовнішнього повітря від його поточних температур до 15ºС, а хладонова ежекторна машина – як другий низькотемпературний ступінь його доохолодження до 10ºС. Ефективність охолодження повітря проаналізована для експлуатації в умовах характерного для України помірного клімату і субтропічного клімату (на прикладі КНР). Як показник використано зменшення витрати палива. Показано, що охолодження повітря на вході газотурбінного двигуна для субтропічного клімату забезпечує у 1,6…1,8 рази більшу економію палива порівняно з умовами помірного клімату. Однак більш глибоке охолодження повітря на вході газотурбінного двигуна до температури 10ºС в абсорбційно-ежекторній холодильній машині порівняно з температурою охолодження повітря 15ºС в абсорбційній бромистолітієвій холодильній машині забезпечує більше скорочення витрати палива для умов помірного клімату ніж для субтропічного клімату. Показано, що якщо для умов помірного клімату його контактне охолодження і забезпечує економію палива близьку до її величини при охолодженні до температури 15ºС в абсорбційній бромистолітієвій холодильній машині, то для субтропічного вологого клімату воно практично не дає ефекту.
- ДокументПідхід до визначення складових теплового навантаження систем кондиціонування припливного повітря(2019) Е. І. Трушляков, М. І. Радченко, А. А. Зубарєв, В. С. ТкаченкоЗапропоновано підхід до визначення складових теплового навантаження системи кондиціонування припливного повітря (СКПП) з урахуванням поточних кліматичних умов експлуатації, який базується на гіпотезі розкладання поточних змінних теплових навантажень на відносно стабільну складову як базову для вибору встановленої (проектної) холодопродуктивності холодильної машини, що працює на номінальних або близьких йому режимах, і нестабільне теплове навантаження, що припадає на попереднє охолодження зовнішнього повітря при змінних поточних зовнішніх температурах. Для обґрунтування підходу до вибору складових теплового навантаження СКПП виконаний аналіз поточних значень питомих теплових навантажень на холодильну машину СКПП при охолодженні зовнішнього повітря від його змінної поточної температури до температур 10, 15 і 20 ºС. Показано, що виходячи з різного темпу приросту річного виробітку холоду, обумовленого зміною теплового навантаження у відповідності з поточними кліматичними умовами протягом року, необхідно вибирати таке проектне теплове навантаження на холодильну машину СКПП охолодження повітря (її встановлену потужність охолодження), яке забезпечує досягнення максимального або близького йому річного виробітку холоду при відносно високих темпах його збільшення. При цьому значення теплового навантаження, що припадає на попереднє охолодження зовнішнього повітря, розраховують за залишковим принципом як різницю раціонального загального теплового навантаження і її базової відносно стабільної складової. Запропонований метод доцільно використовувати при розрахунку проектної базової холодопродуктивності холодильної машини СКПП, що працює на номінальному або близьких йому режимах, і бустерной складової теплового навантаження на попереднє охолодження зовнішнього повітря при змінних поточних зовнішніх температурах з використанням енергозберігаючих методів: акумуляції надлишкового (невикористаного) холоду при знижених поточних теплових навантаженнях на СКПП і його витрачання на попереднє охолодження зовнішнього повітря, річкупераціі охолоджуючого потенціалу повітря, яке відводиться для попереднього охолодження зовнішнього повітря.
- ДокументЕкспериментальне дослідження густини, теплоємності, теплопровідності і в'язкості високотемпературного теплоносія C14-30(2019) М.М. Лук'янов, О.Я. Хлієва, О.Ю. Мельник, І.В. Мотовий, В.П. ЖелєзнийУ статті наведені результати експериментальних досліджень кінематичної в'язкості, густини, теплоємності і теплопровідності теплоносія C14-30 в інтервалі температур 20 - 300 ˚С. Також в роботі детально розглянуті методики проведення досліджень теплофізичних властивостей теплоносія С14-30 і схеми застосованих експериментальних установок. Для виключення термоокислювальної реакцій в теплоносії С14 -30 усі вимірювання теплофізичних властивостей були проведені в середовищі інертного газу. Достовірність отриманих даних підтверджується як виконаним аналізом невизначеності отриманих експериментальних даних, так і проведенням тарувальних експериментів для речовин з добре вивченими теплофізичними властивостями. Показано, що невизначеність експериментальних даних з густини не перевищує 0.00065 г/см3, теплоємності 0,01 кДж/(кг∙К), теплопровідності 0.004 Вт/м∙К і в'язкості 0.04 мм2/с. Отримана інформація з теплофізичних властивостей теплоносія C14-30 буде використана при моделюванні локальних і середніх коефіцієнтів тепловіддачі при вимушеній конвекції теплоносія C14-30 в трубі.
- ДокументДослідження вирорбництва та роботи торгового холодильного обладнання(2019) І.О. Константінов, М. Г. Хмельнюк, О. Г. ФедоровПроведено аналіз виробництва і роботи морозильного ларя з моніторингом температур та енергозатратами системи при отримання штучного холоду. Описані технічні характеристики торгівельного холодильника моделі М400S+. Показана доцільність створення комплексної моделі розрахунку торгового холодильного обладнання, для підвищення його ефективності та скорочення часу на проектування.
- ДокументЗниження енергетичних витрат при роботі холодильного обладнання під час зберігання соковитої рослинницької сировини(2019) О. М. Томчик, М. Г. Хмельнюк, М. І. ГогольРозглянуто спосіб зниження енергетичних витрат при холодильному зберіганні соковитої рослинної продукції шляхом підвищення теплової інерційності та акумулюючої здатності охолоджуваного простору. Засобом підвищення теплової інерційності охолоджуваного простору є тара оригінальної конструкції, виготовлена з полімерного матеріалу, з рідинними прошарками. Запропоновано використання упаковки, що являє собою ящик з кришкою з подвійними стінками. Між зовнішніми та внутрішніми стінками по всьому периметру упаковки передбачений зазор, заповнений рідиною з високою тепловою інерційністю. Проведено дослідження з визначення енергетичних витрат при зберіганні продукту. Результати досліджень при зберіганні плодів яблуні Гала (першого сорту) в упаковках різної конфігурації – експериментальних (з водяними прошарками 7 мм, 17 та 27 мм) і контрольних (без прошарків), показали, що при використанні упаковок з водяними прошарками витрати енергії на зберігання продукту знижуються на 17,5...21,1%. Окрім того, дослідження показали, що в практично рівних умовах зберігання (середній температури в камері і амплітуди її коливань) при застосуванні упаковок з підвищеною теплової інерційністю (акумулюючою здатністю) з водяними прошарками, середній перепад температури плодів за 1 годину зменшився в 1,8...3,6 рази, амплітуда коливань температури плодів зменшилася в 4,9…10,1 рази, втрати маси продукту знизилися на 30,6...38,3%, та дещо зменшилася амплітуда коливань повітря камери. Також для зберігання продукту запропоновано застосовувати стояковий піддон, що містить вантажну платформу, опорний стояковий каркас та знімні елементи з полімерного матеріалу. При цьому знімні елементи установлені по периметру та зверху опорного каркасу. Кожен знімний елемент складається з чотирьох бокових, верхньої і нижньої поверхонь, простір між якими заповнений рідиною з високою тепловою інерційністю.