Integrable geodesic flows on tubular sub-manifolds

dc.contributor.authorТомас Уотерс
dc.date.accessioned2018-12-19T13:12:28Z
dc.date.available2018-12-19T13:12:28Z
dc.date.issued2018
dc.description.abstractIn this paper we construct a new class of surfaces whose geodesic flow is integrable (in the sense of Liouville). We do so by generalizing the notion of tubes about curves to 3-dimensional manifolds, and using Jacobi fields we derive conditions under which the metric of the generalized tubular sub-manifold admits an ignorable coordinate. Some examples are given, demonstrating that these special surfaces can be quite elaborate and varied.
dc.identifier.issn2409-8906
dc.identifier.urihttps://card-file.ontu.edu.ua/handle/123456789/6234
dc.identifier.urihttps://doi.org/10.15673/tmgc.v10i3-4.770
dc.sourceProceedings of the International Geometry Center
dc.titleIntegrable geodesic flows on tubular sub-manifolds
Файли
Зібрання