Специальные классы псевдоримановых пространств с f-структурой, допускающих 2F-планарные отображения

dc.contributor.authorНадежда Григорьевна Коновенко, Ирина Николаевна Курбатова
dc.date.accessioned2019-05-07T13:57:12Z
dc.date.available2019-05-07T13:57:12Z
dc.date.issued2019
dc.description.abstractВ статье изучаются 2F-планарные отображения псевдоримановых пространств, снабженных аффинорной структурой определенного типа. Понятие 2F-планарного отображения аффинносвязных и римановых пространств было введено в рассмотрение Р.Дж. Кадемом. В его работах исследовались общие вопросы теории 2F-планарных отображений аффинносвязных и римановых пространств, снабженных аффинорной структурой. В частности, он доказал, что такое отображение по необходимости сохраняет аффинорную структуру. Мы рассматриваем 2F-планарное отображение псевдоримановых пространств с абсолютно параллельной  f-структурой. Ранее мы доказали, что  псевдориманово пространство с абсолютно параллельной f-структурой представляет собой произведение двух псевдоримановых пространств, одно из которых - келерово; класс псевдоримановых пространств с абсолютно параллельной  f-структурой замкнут относительно рассматриваемых отображений; при условии ковариантного постоянства аффинора f-структуры в отображаемых пространствах  нетривиальные 2F-планарные отображения могут быть трех типов: полные и канонические I,II типа; в зависимости от типа 2F-планарное отображение индуцирует на компонентах произведения отображаемых пространств геодезическое, голоморфно-проективное или аффинное отображение. В настоящей статье продолжается исследование 2F-планарного отображения псевдоримановых пространств с абсолютно параллельной f-структурой. Для всех типов этого отображения (основного и канонических I  и II ) строятся геометрические объекты, инвариантные относительно рассматриваемых отображений: неоднородный объект ( типа параметров Томаса в теории геодезических отображений римановых пространств)  и тензорный  (типа тензора голоморфно-проективной кривизны в теории аналитически-планарных отображений келеровых многообразий).  Выделены классы пространств (2F-плоские, 2F(I)- и 2F(II)-плоские), допускающих 2F-планарное отображение.  Для них выявлена структура тензора Римана и доказаны аналоги теоремы Бельтрами из теории геодезических отображений. Найдены метрики  2F-, 2F(I)-  и 2F(II)-плоских пространств   в специальной системе координат.
dc.identifier.issn2409-8906
dc.identifier.urihttps://card-file.ontu.edu.ua/handle/123456789/8166
dc.identifier.urihttps://doi.org/10.15673/tmgc.v11i4.1304
dc.sourceProceedings of the International Geometry Center
dc.titleСпециальные классы псевдоримановых пространств с f-структурой, допускающих 2F-планарные отображения
Файли
Зібрання