Some remarks concerning strongly separately continuous functions on spaces ℓ_p with p ∊ [1;+∞]

dc.contributor.authorOlena Karlova, Tomáš Visnyai
dc.date.accessioned2018-12-19T13:12:29Z
dc.date.available2018-12-19T13:12:29Z
dc.date.issued2018
dc.description.abstractWe give a sufficient condition on strongly separately continuousfunction f to be continuous on space ℓ_p for p ∊ 2 [1;+∞]. We prove theexistence of an ssc function f : ℓ_∞ → R which is not Baire measurable.We show that any open set in ℓ_p is the set of discontinuities of a stronglyseparately continuous real-valued function for p ∊ [1;+∞).
dc.identifier.issn2409-8906
dc.identifier.urihttps://card-file.ontu.edu.ua/handle/123456789/6235
dc.identifier.urihttps://doi.org/10.15673/tmgc.v10i3-4.769
dc.sourceProceedings of the International Geometry Center
dc.titleSome remarks concerning strongly separately continuous functions on spaces ℓ_p with p ∊ [1;+∞]
Файли
Зібрання