On the generalization of Inoue manifolds

dc.contributor.authorAndrei Pajitnov, Endo Hisaaki
dc.date.accessioned2021-03-04T13:57:54Z
dc.date.available2021-03-04T13:57:54Z
dc.date.issued2020
dc.description.abstractThis paper is about a generalization of celebrated Inoue's surfaces. To each matrix M in SL(2n+1,ℤ) we associate a complex non-Kähler manifold TM of complex dimension n+1. This manifold fibers over S1 with the fiber T2n+1 and monodromy MT. Our construction is elementary and does not use algebraic number theory. We show that some of the Oeljeklaus-Toma manifolds are biholomorphic to the manifolds of type TM. We prove that if M is not diagonalizable, then TM does not admit a Kähler structure and is not homeomorphic to any of Oeljeklaus-Toma manifolds.
  
dc.identifier.issn2409-8906
dc.identifier.urihttps://card-file.ontu.edu.ua/handle/123456789/16682
dc.sourceProceedings of the International Geometry Center
dc.titleOn the generalization of Inoue manifolds
Файли
Зібрання