On the generalization of Inoue manifolds

Ескіз недоступний
Дата
2020
Назва журналу
Номер ISSN
Назва тому
Видавець
Анотація
This paper is about a generalization of celebrated Inoue's surfaces. To each matrix M in SL(2n+1,ℤ) we associate a complex non-Kähler manifold TM of complex dimension n+1. This manifold fibers over S1 with the fiber T2n+1 and monodromy MT. Our construction is elementary and does not use algebraic number theory. We show that some of the Oeljeklaus-Toma manifolds are biholomorphic to the manifolds of type TM. We prove that if M is not diagonalizable, then TM does not admit a Kähler structure and is not homeomorphic to any of Oeljeklaus-Toma manifolds.
  
Опис
Ключові слова
Бібліографічний опис