On tensor products of nuclear operators in Banach spaces
Анотація
The following result of G. Pisier contributed to the appearance of this paper: if a convolution operator ★f : M(G) → C(G), where $G$ is a compact Abelian group, can be factored through a Hilbert space, then f has the absolutely summable set of Fourier coefficients. We give some generalizations of the Pisier's result to the cases of factorizations of operators through the operators from the Lorentz-Schatten classes Sp,q in Hilbert spaces both in scalar and in vector-valued cases. Some applications are given.