On tensor products of nuclear operators in Banach spaces

Ескіз недоступний
Дата
2021
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Анотація
The following result of G. Pisier contributed to the appearance of this paper: if a convolution operator ★f : M(G) → C(G), where $G$ is a compact Abelian group, can be factored through a Hilbert space, then f has the absolutely summable set of Fourier coefficients. We give some generalizations of the Pisier's result to the cases of factorizations of operators through the operators from the Lorentz-Schatten classes Sp,q in Hilbert spaces both in scalar and in vector-valued cases. Some applications are given.
Опис
Ключові слова
Бібліографічний опис