КЛАСТЕРНИЙ АНАЛІЗ ДАНИХ В АВТОМАТИЗОВАНИХ СИСТЕМАХ ПРОСТЕЖУВАНОСТІ
dc.contributor.author | О. М. Жигайло, В. В. Борис | |
dc.date.accessioned | 2018-12-18T15:04:49Z | |
dc.date.available | 2018-12-18T15:04:49Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Важливою особливістю технологічних процесів харчових виробництв є істотний вплив характеристик сировини, що переробляється, на показники якості готової продукції. Тому при виділенні об'єкта управління пропонується розглядати разом: певний етап технологічного процесу, що реалізується одним агрегатом або якоюсь їх групою, та ті бізнес-процеси, які впливають на особливості його протікання і на одержуваний кінцевий результат. Для управління такими складними об'єктами використовуються різні автоматизовані системи, які накопичують у своїх базах даних великі обсяги інформації. Розробка і реалізація нових алгоритмів на основі методів інтелектуального аналізу даних, які з урахуванням цілей управління і даних про об'єкт управління могли б забезпечувати вибір найбільш ефективного варіанту управлінського рішення, є дуже актуальним завданням. Прийняті управлінські рішення, як результати використання розробленого алгоритму, повинні в подальшому забезпечувати еволюцію технологій управління розглянутими об'єктами.Широке вивчення предметної області підтвердило доцільність вибору методу кластерного аналізу як основи для розроблюваного алгоритму. Це сприяло створенню авторської класифікації різних методів і алгоритмів кластеризації. Результат їх порівняльного аналізу привів до постановки завдання реалізації процедури вдосконаленою кластеризації даних на основі методу k-means, яка б забезпечувала визначення положень початкових центрів кластерів і автоматичний розрахунок їх кількості. Розроблений новий програмний модуль кластерного аналізу «Zhy & Bor» був апробований на різних тестових прикладах набору даних і при наявності "спірних" об'єктів показав свою перевагу перед результатами використання методу k-means в таких програмних інструментах, як Deductor Studio Academic, Statistica StatSoft, SPSS Modeler IBM. | |
dc.identifier.issn | 2312-931X | |
dc.identifier.uri | https://card-file.ontu.edu.ua/handle/123456789/5794 | |
dc.identifier.uri | https://doi.org/10.15673/atbp.v10i1.879 | |
dc.source | Automation of technological and business processes | |
dc.title | КЛАСТЕРНИЙ АНАЛІЗ ДАНИХ В АВТОМАТИЗОВАНИХ СИСТЕМАХ ПРОСТЕЖУВАНОСТІ |