Переглянути
Нові надходження
- ДокументA Physics-Based Estimation of Mean Curvature Normal Vector for Triangulated Surfaces(2019) Sudip Kumar Das, Mirza Cenanovic, Junfeng ZhangIn this note, we derive an approximation for the mean curvature normal vector on vertices of triangulated surface meshes from the Young-Laplace equation and the force balance principle. We then demonstrate that the approximation expression from our physics-based derivation is equivalent to the discrete Laplace-Beltrami operator approach in the literature. This work, in addition to providing an alternative expression to calculate the mean curvature normal vector, can be further extended to other mesh structures, including non-triangular and heterogeneous meshes.
- ДокументOn the integrability problem for systems of partial differential equations in one unknown function, II(2019) Antonio KumperaWe continue here our discussion of Part I, [18], by examining the local equivalence problem for partial differential equations and illustrating it with some examples, since almost any integration process or method is actually a local equivalence problem involving a suitable model. We terminate the discussion by inquiring on non-integrable Pfaffian systems and on their integral manifolds of maximal dimension.
- ДокументПро структуру матриць над областю головних ідеалів відносно перетворення подібності(2019) Володимир ПрокіпВ статті дослiджується структура матриць над областю головних iдеалiв вiдносно перетворення подiбностi. В другому розділі наведено допоміжні результати. В цьому розділі вказано трикутну формуматрицi відносно перетворення подібності, мінімальний многочлен якої розкладається в добуток різних лінійних множників. В розділі 3 доведено, що форма Хессенберга матриці A з незвідним мінімальним квадратичним многочленом m(λ) є блочно-трикутна матриця з блоками вимірності 2х2 на головній діагоналі та з характеристичними многочленами m(λ). У четвертому розділі доведено, що матриця A із мінімальним многочленом m (λ) = (λ-α) (λ-β), α ≠ β подібна нижній блочно-трикутній матриці, діагональними блоками якої є діагональні матриці з елементами α i β на головних діагоналях відповідно. Як наслідок вказано канонічну форму інволютивної матриці над кільцем цілих чисел відносно перетворень подібності.
- ДокументThree spectra problem for Stieltjes string equation and Neumann conditions(2019) Anastasia Dudko, Vyacheslav PivovarchikSpectral problems are considered which appear in description of small transversal vibrations of Stieltjes strings. It is shown that the eigenvalues of the Neumann-Neumann problem, i.e. the problem with the Neumann conditions at both ends of the string interlace with the union of the spectra of the Neumann-Dirichlet problems, i.e. problems with the Neumann condition at one end and Dirichlet condition at the other end on two parts of the string. It is shown that the spectrum of Neumann-Neumann problem on the whole string, the spectrum of Neumann-Dirichlet problem on the left part of the string, all but one eigenvalues of the Neumann-Dirichlet problem on the right part of the string and total masses of the parts uniquely determine the masses and the intervals between them.