On symmetry reduction and some classes of invariant solutions of the (1+3)-dimensional homogeneous Monge-Ampère equation

Ескіз недоступний
Дата
2021
Назва журналу
Номер ISSN
Назва тому
Видавець
Анотація
We study the relationship between structural properties of the two-dimensional nonconjugate subalgebras of the same rank of the Lie algebra of the Poincaré group P(1,4) and the properties of reduced equations for the (1+3)-dimensional homogeneous Monge-Ampère equation. In this paper, we present some of the results obtained concerning symmetry reduction of the equation under investigation to identities. Some classes of the invariant solutions (with arbitrary smooth functions) are presented.
Опис
Ключові слова
Бібліографічний опис
Зібрання