THE USE OF CONTROL THEORY METHODS IN TRAINING NEURAL NETWORKS ON THE EXAMPLE OF TEETH RECOGNITION ON PANORAMIC X-RAY IMAGES

Ескіз недоступний
Дата
2021
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Анотація
The article investigated a modification of stochastic gradient descent (SGD), based on the previously developed stabilization theory of discrete dynamical system cycles. Relation between stabilization of cycles in discrete dynamical systems and finding extremum points allowed us to apply new control methods to accelerate gradient descent when approaching local minima. Gradient descent is often used in training deep neural networks on a par with other iterative methods.  Two gradient SGD and Adam were experimented, and we conducted comparative experiments.  All experiments were conducted during solving a practical problem of teeth recognition on 2-D panoramic images. Network training showed that the new method outperforms the SGD in its capabilities and as for parameters chosen it approaches the capabilities of Adam, which is a “state of the art” method. Thus, practical utility of using control theory in the training of deep neural networks and possibility of expanding its applicability in the process of creating new algorithms in this important field are shown.
Опис
Ключові слова
Бібліографічний опис