Переглянути
Нові надходження
- ДокументРозділення неоногелієвої суміші в комбінованій установці(2021) В.Л. Бондаренко, Є.В. Медушевський, Ю.М. СимоненкоРозглянуто технологічну послідовність переробки неоногелієвої суміші, що включає утилізацію віддувочної фракції на основі гелію. Україна позбавлена газових родовищ, які містять гелій в концентраціях, достатніх для промислового виробництва. Тому переробка гелієвих побічних сумішей для вітчизняної промисловості є вкрай актуальною. Розділення Ne-He-сумішей зазвичай проводять шляхом низькотемпературної адсорбції. Окрім чистого гелію в адсорберах утворюються концентровані суміші неону, які можуть бути сировиною в кріогенному виробництві неону. Такий крок дозволяє створити фактично безвідходний ресурсозберігаючий процес отримання легких рідкісних газів. Реалізація згаданого технічного рішення пов’язана з рядом технологічних обмежень. Зокрема, переробка зворотного потоку неону (після вилучення з віддувки основної частки гелію) можлива у разі достатньої концентрації Ne. В ідеалі, вміст неону в такому потоці має бути не нижчим, ніж у початковій сирій суміші перед ректифікаційним блоком. Для підтримання оптимальної концентрації неону у зворотному потоці запропоновано проводити утилізацію віддувки в два етапи. На першій стадії суміш розділяється у мембранному модулі і з неї формується перший потік неонового концентрату. За рахунок часткового вилучення неону залишкова суміш збагачується гелієм і її переробка методом кріогенної адсорбції спрощується. Запропонована схема поділу побічного гелієвого концентрату дозволяє автоматично підтримувати задану концентрацію за рахунок балансу потоків на виході з мембранного модуля. Попередній поділ суміші в мембрані сприяє економії холодоагенту (рідкого азоту) за рахунок зниження навантаження на адсорбційний блок отримання гелію. Комбінована система розділення суміші легких рідкісних газів дозволяє отримувати гелій з концентрацією 99,999…99,9999%
- ДокументДослідження ефективності мікрохвильового нагріву нафтопродуктів(2021) І.Л. Бошкова, Н.В. Волгушева, О.С. Тітлов, Е.І. Альтман, І.І. МукміновРозглядається задача оптимізації нагріву нафтопродуктів при зливі з залізничних цистерн при використанні мікрохвильового нагрівання. Встановлено, що мікрохвильовий нагрів дозволяє значно спростити технологічну схему, виключивши всі процеси і апарати, пов'язані з підготовкою теплоносія. Визначено, що в даний час існуючі патенти і технічні рішення, запропоновані до застосування мікрохвильового нагріву для розігріву нафтопродуктів, припускають, що мікрохвильова енергія падає на вільну поверхню рідини. Стверджується, що недоліком подібних схем є істотна нерівномірність нагріву внаслідок того, що мікрохвильова енергія швидко згасає при просуванні вглиб цистерни. Відзначається, що при нагріванні поверхні рідини в цистерні відстань від джерела до зливного отвору досить велика, внаслідок чого неможливе ефективне використання мікрохвильового нагріву. Запропоновано спосіб вирішення цієї проблеми, що полягає в установці мікрохвильового пристрою всередині порожнистої труби, яка безпосередньо приєднується до верхнього люка при підготовці до відкачування і занурюється в нафтопродукт на глибину, що корелюється з глибиною проникнення мікрохвильового поля в конкретному продукті. Проведено оцінку глибини проникнення мікрохвильової енергії в досліджуваний нафтопродукт – мазут, на підставі якої рекомендовано встановлювати відстань від випромінювача до зливного отвору. Стверджується, що моделювання мікрохвильового нагрівання доцільно проводити на основі диференціального рівняння теплопровідності з урахуванням внутрішніх джерел теплоти. Представлено математичну модель, що описує нагрівання об’єму високов'язких нафтопродуктів як процес теплопровідності в необмеженому масиві при дії мікрохвильового випромінювання. На прикладі мазуту проведені розрахунки з використанням методу кінцевих різниць, які показали розподіл температур в масиві в різні моменти часу
- ДокументВдосконалення енергетичних характеристик генераторів абсорбційних холодильних агрегатів(2021) Д.Х. Адамбаєв, О.С. ТітловНа основі оригінальної методики розрахунку термодинамічних параметрів генератора абсорбційного холодильного агрегату (АХА) виконаний аналіз його робочих параметрів з урахуванням результатів експериментальних досліджень типових виробничих аналогів. Отримані результати теоретичного дослідження дозволили зробити наступні висновки. По-перше, на відміну від чистих речовин, при роботі генератора на бінарних сумішах, зокрема, на водоаміачному розчині (ВАР), коефіцієнти подавання генератора залежать від величини підведеного теплового навантаження. Так, при збільшенні теплового навантаження від 40 до 80 Вт чисельні значення коефіцієнтів подавання знижуються приблизно в 3 рази. По-друге, залежність питомої кількості підведеного тепла має оптимум (мінімум) в діапазоні величин теплового навантаження від 40 до 80 Вт і температур кінця кипіння від 145 до 170 °С. Основним значимим результатом розрахункових досліджень можна вважати знайдену критичність енергетичної ефективності і температури кінця пароутворення (кипіння) ВАР в генераторі. Показано, що робота типового АХА з повітряним охолодженням теплорозсіювальних елементів при температурі навколишнього середовища 25 °С найбільш ефективна в діапазоні температур кінця кипіння від 147 до 155 °С. Зниження і зростання цієї температури за межами оптимального діапазону призводить до збільшення питомих енерговитрат при роботі АХА, відповідно до 9%, причому в першому випадку це пов'язано з невиправдано високим підігрівом рідкої фази, а в другому – зі збільшенням частки абсорбенту (води) в паровій суміші. Показано також, що наявність мінімуму енерговитрат при роботі генератора АХА пояснюється тим, що в досліджуваному діапазоні режимних параметрів термосифона (температура на вході в генератор від 87 до 112 °С, на виході – від 145 до 170 °С, тиск в системі 9 бар, масова частка аміаку в ВАР 0,34) досягається оптимальне співвідношення складу рідкої і парової фази на виході генератора. Детальне вивчення фізичної природи даного ефекту повинно проводитися на основі спільного моделювання теплових і гідравлічних характеристик генераторів
- ДокументСезонні акумулятори тепла в схемах теплопостачання приватних житлових будинків(2021) Ю.І. Дем'яненко, Т.В. ДуднікСтаття присвячена вибору сезонного акумулятора тепла (САТ) для первинного контуру теплового насосу в системі опалення та гарячого водопостачання приватного житлового будинку. В Україні в індивідуальному житловому будівництві впровадження найсучасніших ефективних систем акумуляції енергії стримується значною вартістю обладнання та відсутністю державної підтримки. Проте неухильне зростання тарифів на енергоносії спонукає домогосподарів до пошуку прийнятних варіантів САТ серед того, що пропонується споживачеві на вітчизняному ринку технологій та обладнання відновлюваної енергетики. Перехід на відновлювані джерела енергії (ВДЕ) супроводжує додаткове енергетичне завдання – узгодження нестабільних ВДЕ з навантаженням, яке також змінюється і впродовж доби, і впродовж року. Це особливо притаманне країнам, що потребують опалення в холодну пору року. Потужність, що генерується більшістю ВДЕ, істотно залежить від мінливих природних явищ. В статті запропонована німецька технологія крижаного теплоакумулятора – Wärmepumpe Eisspeicher-System. Вона розроблена спеціалістами фірми Viessmann як реакція на заборону німецьким природоохоронним відомством ґрунтових теплових насосів – як колекторних, так і з ґрунтовими зондами. В умовах густонаселеної Німеччини і високої вартості землі, відчуження значних її площ для улаштування первинних контурів ТН є неприйнятним – земля виводиться з сільськогосподарського обігу – і суперечить державним інтересам. Тому використання крижаних акумуляторів як первинних контурів ТН знімає проблему як прямої, так і опосередкованої екологічної шкоди. Наведені в статті розрахунки теплового балансу первинного контуру теплового насосу Eisspeicher-System для найхолоднішого місяця опалювального періоду підтверджують можливість функціонування системи опалення та ГВП у моновалентному режимі
- ДокументМоделювання процесів теплообміну в мікромеханічних перетворювачах на основі добавок наночасток графена(2021) Б.Б. Черниш, С.В. АртеменкоВивчення термодинамічних та електричних властивостей міктомеханічних перетворювачів дає змогу краще зрозуміти за якими принципами відбуваються процеси в наноматеріалах, та за допомогою яких комбінацій послідовності дій можливо впливати на ці процеси. Основою мікромеханічного сенсорів є вбудовані наноструктуровані матеріали, які являються основою в якості нових матеріалів що мають задані властивості. Види генеалогічного дерева графена: графіт – багатошаровий графен, фуллерен (C60) – упакований графен, вуглецеві нанотрубки (CNT) – згорнутий графен, при додавані до струмопровідних полімерів сворюють нові мателіали з певними властивостями які потрібно дослідити. Запропоновано алгоритм розрахунку термодинамічних властивостей середовищ на основі рівняння стану NIST (National Institute of Standards and Technologies) при різних концентраціях наночасток графена що змішуються з струмопровідним полімером Pedot:PSS. Проведені розрахунки показали, що більшим значенням теплопровідності відповідають нижчі максимальні температури графенового шару, а збільшення потужності теплового потоку призводить до збільшення максимальної температури. Наведено термодинамічні властивості розчину карбонових нанотрубок зі струмопровідним полімером. Запропоновані регулярні та сингулярні частини термодинамічної поверхні референтної рідини та нанофлюїду (концентрація наночастинок у кількості < 3 % у зведеному вигляді). Розглянуто альтернативний підхід до інтенсифікації теплообміну на основі концепції нанофлюїдів, тобто модифікації властивостей базисної сполуки за рахунок наноструктур. Теоретично передбачено резистивну залежність від температури. Описано результати розрахунків фазової рівноваги для флюїдних сполук. Показано, що виробництво наноребер є однією з найбільш актуальних проблем застосування нанотехнологій в теплоенергетиці