Том 11 № 4
Постійне посилання зібрання
Переглянути
Перегляд Том 11 № 4 за Назва
Зараз показуємо 1 - 9 з 9
Результатів на сторінці
Налаштування сортування
- ДокументCFD-моделювання руху холодоагенту по трубопроводу мультизональної системи кондиціонування повітря(2020) Л. С. Жуковецька, Н. В. СлушнаТехнології просторової візуалізації і симуляції роботи технологічного обладнання набули особливої актуальності завдяки тому, що забезпечують істотно більш наочний спосіб розгляду проектованого об'єкта. Віртуальні прототипи, в ролі яких виступають 3D моделі, дозволяють проаналізувати роботу обладнання перед прийняттям проектних рішень. При вивченні та дослідженні моделей істотну допомогу надає анімація – тобто відтворення і демонстрація моделі в процесі її формування або зміни.У даній статті описується моделювання потоку рідини в замкнутому контурі на основі твердотільної просторової моделі елементів мультизональної системи кондиціонування. В якості системи просторового моделювання та аналізу використаний продукт компанії SolidWorks Inc. Для моделювання потоку використовується інструмент Flow Simulation, який включений в SolidWorks і реалізує методи обчислювальної гідродинаміки. При підготовці до дослідження була створена просторова модель і сформована розрахункова область. Суть формування розрахункової області зводиться до виділення на моделі замкнутого контуру, що відповідає умовам наявності стінок зіткнення і обмеженості вхідних і вихідних отворів. Після чого задача аналізу протікання рідини по замкнутому контуру зводиться до вирішення стаціонарної задачі внутрішнього типу. В цьому випадку замкнута порожнина – це і є рідинний простір, а заглушки на кінцях отворів трубопроводу є тими елементами, які завершують формування системи "рідина-тіло". Для такої системи вже можливе проведення гідрогазодинамічного аналізу за допомогою Flow Simulation. Використання комплексу сучасних програмних засобів забезпечило візуальну оцінку картини перебігу холодоагенту по трубопроводу мультизональної системи кондиціонування, необхідну для визначення проблемних місць.
- ДокументАвтоматизації замісу тіста з використанням нейронної мережі.(2020) О. М. Жигайло, В. В. Нечепуренко, В. В. ДобровольськийНа сучасних хлібопекарських підприємствах продовжує існувати проблема отримання якісного хліба. Вона виникає внаслідок постійної зміни властивостей як основної сировини (борошна) так і допоміжних рецептурних компонентів (дріжджів, концентрату молочно-кислої закваски, цукрових та соляних розчинів). Тому технологи-хлібопекарі, з метою підвищення якості результатів процесу замісу тіста, використовують різноманітні програми управління тістомісильними машинами. Вибір цих програм не обходиться без втручання “людського фактору”, а це може негативно вплинути на кінцевий результат. Якщо реалізовувати більш ефективне реагування на ці зміни під час замісу, то можна добитися підвищення рівня стабільності якісних показників готового тіста на всіх подальших етапах його обробки. Для пошуку можливостей вирішення цієї задачі пропонується проведення аналізу кластерної структури партій борошна, що відрізняються по показникам якості (число падіння, кількість клейковини та якість клейковини), а також дослідження результатів замісу тіста при різних програмах та з різними партіями борошна. Було підтверджено вплив хлібопекарних властивостей борошна на взаємозв’язок тривалості та інтенсивності замісу з якістю тіста, що виготовлюється. Це обумовило доцільність формування програм для тістомісильної машини на основі результатів кластерного аналізу, який надає можливість отримати додаткову, корисну інформацію для автоматизації процесу управління. Тому запропонована реалізація алгоритму автоматичного вибору програми замісу тіста для тістомісильної машини та її корегування під час замісу за допомогою штучних нейронних мереж. Корегування залежить від реологічних властивостей тіста на які, в першу чергу, впливає сила борошна. Саме вона забезпечує процес його формування з необхідними структурно-механічними властивостями (пружність, пластичність, еластичність, в’язкість), які поєднуються і постійно змінюються в ході технологічного процесу. Оцінка цих властивостей тіста, має більш інтегральні ознаки, більш об’єктивна. Для цього можуть використовуватися два варіанти: 1) експериментальний заміс на фаринографі з реєстрацією фаринограми в електронному вигляді; 2) вимірювання та реєстрація активної потужності споживаної електроприводом місильного органу під час замісу тіста. Далі, по зареєстрованим даним, проводиться автоматичний розрахунок необхідних показників властивостей тіста і здійснюється корегування параметрів програми замісу.
- ДокументДослідження процесів утилізації тепла пароповітряних сумішей: імітаційне моделювання(2020) Д. А. Ковальчук, О. В. МазурРозглянуті основні підходи до розробки імітаційних моделей, освітлені їх недоліки та переваги. Розглянута імітаційна модель процесу глибокої утилізації тепла пароповітряних сумішей з використанням парокомпресійного теплового насосу, до складу якої входять імітаційні моделі компресора, конденсатора, електронного розширювального вентиля, випарника, переохолоджувача та контактного теплообмінника – утилізатора тепла пароповітряних сумішей. Імітаційні моделі цих складових побудовані з використанням експериментальних даних, отриманих авторами в результаті виконання фізичних натурних експериментів на лабораторній дослідній установці. В імітаційній моделі випарника теплового насосу реалізовано функцію розрахунку «баластної» та «ефективної» витрати холодоагенту. «Баластна» витрата виникає за рахунок переохолодження холодоагенту до температури кипіння і супроводжується випаровуванням його частки, яка не приймає участі у відборі тепла випарником. Для цього до імітаційної моделі випарника була додана підсистема розрахунку перепаду температур кипіння (тиску) по довжині випарника в залежності від витрати холодоагенту та температурного напору у випарнику, що враховує довжину ділянки випарника на якій відбувається кипіння рідкої фази. Залежність перепаду тиску по довжині випарника від витрат холодоагенту через нього є не монотонно зростаючою функцією а має екстремум і спадає при рівнях перегріва холодоагенту від 15 до 0 °С. Тиск на виході випарника розраховується в моделі з використанням нелінійної функції двох змінних – положення електронного розширювального вентиля та частоти обертання компресора. Динамічні властивості каналів моделюються ланками, передатні функції яких були отримані в результаті фізичних експериментів. Проведена перевірка розробленої імітаційної моделі на адекватність, для чого було організовано ряд комп’ютерних експериментів з умовами, аналогічними умовам проведення натурних фізичних експериментів. Порівняння результатів моделювання та фізичного експерименту показало високу ступінь їх схожості.
- ДокументДослідження температурних полів в процесі формування вуглецевих виробів в режимі пресування.(2020) О. А. Жученко, М. Г. Хібебаавторів залишається дослідження впливу таких технологічних параметрів, як потужність нагрівачів, температура завантаженої маси та швидкості пресування на температурні поля робочого простору мундштука гідравлічного пресу. В даній праці було досліджено зміну температурного поля в залежності від таких технологічних параметрів: потужності індукторів формувальної та калібрувальної зони мундштука, свічок для додаткового нагріву мундштука, температури поверхні масного циліндру та швидкості пресування. Оскільки для отримання бездефектної продукції необхідно, щоб кожен з нагрівачів забезпечував заданий (такий, що забезпечить умови проковзування) розподіл температур в своїй зоні мундштука, то також було досліджено динаміку температур в точках, що характеризують розподіл температур в кінці кожної зони мундштука (переріз наприкінці калібрувальної зони - І переріз, переріз на межі формувальна – калібрувальна зона – ІІ переріз, переріз на межі масний циліндр – формувальна зона – ІІІ переріз). В результаті досліджень, проведених за допомогою розробленої моделі виявлено, що найбільший вплив на температури в зонах І-ІІ має індуктор калібрувальної зони. Також індуктор формувальної зони має значний вплив на температурне поле в ІІІ та ІІ зонах, а свічки на температури в І та ІІ зоні. При цьому вплив нагрівачів на більш віддалені зони проявляється тільки за 20-30 хв. після зміни потужності нагрівача, що свідчить про появу запізнювання в перехідному процесі. Температура завантаженої маси має досить значний вплив на розподіл температур в усьому об’ємі робочого простору мундштука. Також виявлено, що збільшення швидкості пресування негативно впливає на середню температуру електродної маси, а також збільшує градієнт температур від центральної частини робочого простору мундштука до його меж.
- ДокументЗахист даних засобом цифрового підпису(2020) В. М. Плотніков, Ю. В. БорцоваУ цей час багато підприємств використовують ті або інші методи безпаперової обробки й обміну документами. Використання подібних систем дозволяє значно скоротити час, затрачуваний на оформлення угоди й обмін документацією, удосконалити й зменшити кошти на процедуру підготовки, доставки, обліку й зберігання документів, побудувати корпоративну систему обміну документами. Однак при переході на електронний документообіг встає питання авторства документа, вірогідності й захисту від перекручувань. Найбільш зручним засобом захисту електронних документів від перекручувань, що дозволяють при цьому однозначно ідентифікувати відправника, повідомлення, є електронний цифровий підпис (ЕЦП). Отже, що ж таке електронний цифровий підпис? Закон дає наступне визначення даного терміна: «електронний цифровий підпис - реквізит електронного документа, призначений для захисту даного електронного документа від підробки, отриманий у результаті криптографічного перетворення інформації з використанням закритого ключа електронного цифрового підпису й що дозволяє ідентифікувати власника сертифіката ключа підпису, а також установити відсутність перекручування інформації в електронному документі». Із цього визначення видно, що ЕЦП формується за допомогою спеціальних математичних алгоритмів на основі властиво документа й когось «закритого ключа», що дозволяє однозначно ідентифікувати відправника повідомлення.
- ДокументКомп’ютерний зір у вирішенні проблеми розпізнавання форми кубічного пельменя.(2020) П. Голубков, Д. Путников, В. ЕгоровВ статті вирішується задача розпізнавання форми продукції випускаємої новим комплексом обладнання з виробництва пельменної продукції особливої, кубічної форми. Випуск продукції складної важкореалізовуваної форми використовується для збільшення економічної складової і виключення підробок. При виготовленні товарів виникає ряд труднощів, які необхідно подолати. Однією з них є облягання фаршу з мінусовою температурою в тісто яке має кімнатну температуру. Провівши ряд активних експериментів з замороженим фаршем і теплим тістом, отримавши і обробивши отримані результати, ми прийшли до висновку, що створюване обладнання повинно мати не тільки систему автоматичного керування, що включає в себе можливість керувати комплексом, а й містити алгоритми, які дадуть можливість розраховувати за математичними моделями необхідну для підтримання властивостей тісту температуру. А також включити в можливості комплексу комп'ютерну обробку отриманої продукції і використовуючи сучасні технології комунікацій, забезпечити передачу інформації, яка буде доступна для віддаленої роботи як самого комплексу, так і інформації про вироблену ним продукцію. Використовуючи нову, важкореалізовану форму і сучасні технології, створений комплекс в майбутньому дасть можливість не тільки виробляти нову продукцію з формою захищеної від підробки, а й скоротити витрати виробництва. Ефективність буде обумовлена ще й в тому, що на продукцію такої форми, може бути підвищена ціна з міркування змісту в собі кращих інгредієнтів і можливість використання більш компактною упаковки. Так як в пачках маючих в собі напівфабрикати кубічної форми фактично буде відсутній вільне місце на відміну від сучасних пачок з пельменній продукцією, що містить до 20% повітря. Це, так само дасть приріст ефективності при зберіганні і переміщенні продукції. Варто звернути увагу ще і на те, що дане обладнання зможе виробляти нові види продукції напівфабрикатів, що включають в себе не тільки використовуються в даний час поширені інгредієнти, такі як свинина і яловичина, а й м'ясо птиці, риби і містити безліч різних рецептів фаршу і тіста. Що в свою чергу розширить асортимент виробляємої продукції напівфабрикатів. Кінцевою стадією приготування пельменя є його перевірка та відбраківка. Якщо форма пельменя відповідає регламенту, його відправляють на подальшу заморозку, в протилежному випадку, його відправляються на переробку, при цьому вноситься коригування у систему керування температурою нагріву. Сучасні комп’ютерні методи дозволяють отримувати ці дані з фото. Існує 3 методи обробки фото для виявлення необхідних властивостей: статичні методи, методи порівняння із зразком, нейронні мережі. У роботі розглядається розпізнавання пельменя з використанням бібліотеки відкритого доступу OpenCV, яка вже має безліч функцій розпізнавання та постійно дописується новими.
- ДокументМатематичне моделювання динамічних режимів процесу ректифікації при застосуванні рухливих керуючих впливів(2020) А. Р. ШейкусПідвищення якості керування об'єктами з розподіленими параметрами, до яких відноситься процес ректифікації, можливо досягти використанням рухливих впливів. Відомо, що переміщення за висотою колони точки подання живлення або перерозподіл даного потоку між двома контактними пристроями апарату дозволяє забезпечити недосяжні традиційним керуванням техніко-економічні показники стаціонарних режимів. При цьому перехідні процеси в колоні при використанні рухливих впливів залишалися недослідженими. У статті розроблено математичну модель динаміки процесу ректифікації, що враховує рухливі керуючі впливи, а також досліджено особливості динамічних режимів роботи колони при їх використанні. В моделі передбачено можливість реалізації різних за формами і інтенсивностями збурень і керуючих впливів за декількома каналами одночасно або у визначені моменти часу. Модель дозволяє проводити розрахунки процесів багатокомпонентної і складної ректифікації, може використовуватися при моделюванні пускових режимів. Процес ректифікації внаслідок використання рухливих впливів виходить зі стану динамічної рівноваги. Встановлено, що новий стаціонарний режим досягається регулюванням тиску наверху колони, рівнів в ємностях для збору кубового залишку і дистиляту. Запропоновано використання ПІД-регуляторів з впливами на витрати холодоагенту в конденсатор і продуктів поділу. Динамічна модель процесу доповнена описом даних контурів автоматичного регулювання. З використанням розробленої моделі проведено обчислювальні експерименти на прикладі колони для поділу суміші метанол-вода. Доведено, що перехідні процеси при використанні рухливих керуючих впливів на процес ректифікації характеризуються допустимими показниками якості.
- ДокументМетод нечіткої класифікації на основі послідовного аналізу вальда(2020) О. Ю. Мулеса, В. Є. Снитюк, С. О. ГерзаничРозглядаються задачі прогнозування можливості зміни стану об’єкта на основі його оцінки за множиною критеріїв. До таких задач відносять задачі медичного прогнозування, тобто прогнозування можливості виникнення в майбутньому у особи загрозливого для неї стану. Цю задачу можна сформулювати як задачу класифікації, де один з класів відповідатиме великому ступеню ризику виникнення загрозливого стану, а інший – низькому ступеню ризику. В такій інтерпретації задача класифікації може бути розв’язана за допомогою методу послідовного аналізу Вальда, який базується на теоремі Байєса та враховує інформативність ознак, за якими проводиться класифікація. Такий підхід має ряд особливостей, пов’язаних з визначенням порогів та опрацюванням тих значень ознак, які близькі до порогових. В статті показано, що при застосуванні методу Вальда для об’єктів із значеннями ознак, близькими до порогових, можливі випадки отримання протилежних рішень. З метою підвищення ефективності класифікації запропоновано метод нечіткої класифікації. Особливістю розробленого методу є те, що особа, яка приймає рішення, може вказати характер функції належності для визначення близькості заданих значень до порогових і таким чином задати інтервал допустимої зміни порогових значень. Алгоритм обчислює ступені належності заданого об’єкта до кожного з класів. Виконано експериментальну верифікацію розробленого методу для задачі прогнозування невиношування вагітності. На етапі формалізації медичних знань відібрані показники, які можуть бути використані для прогнозування, створена база даних клінічного матеріалу. На модельних прикладах продемонстровано перевагу розробленого методу в порівнянні з методом послідовного аналізу Вальда. Отримані в дослідженні результати можуть використовуватися при побудові прогностичних алгоритмів в медицині.
- ДокументМОДЕЛИРОВАНИЕ БАЛАНСИРОВКИ ЭНЕРГОСИСТЕМЫ ПРИ УСЛОВИИ СОДЕРЖАНИЯ В НЕЙ ЗНАЧИТЕЛЬНОЙ ДОЛИ НЕДИСПЕТЧЕРИЗУЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ(2020) М. М. Максимов, В. О. ДавидовПовышение доли недиспетчеризуемых возобновляемых источников энергии в единых энергосистемах влечет за собой проблему балансировки энергосистемы. Как правило, затраты на поддержание баланса между произведенной и потребленной энергией сторонники «зеленой» энергии перекладывают на плечи энергосистемы и не учитывают при подсчете экономического эффекта от возобновляемых источников. Цель данной работы, провести имитационное моделирование процесса балансировки энергосистемы с большой долей недиспетчеризуемых возобновляемых источников. В работе проведен анализ пусковых режимов различных типов энергоустановок. Смоделирована энергосистема с различным соотношением диспетчерезуемых энергоустановок. Проведена оценка различных сценариев развития событий при появлении дефицита генерируемой энергии в размере 25%, 50% и 75% от установленной мощности недиспетчерезуемых источников энергии. Показано, что традиционный метод компенсации возмущений за счет вращающегося резерва при увеличении доли возобновляемых источников не может полностью компенсировать эти возмущения, что на практике приведет к отключению от энергосети части потребителей. Повышение доли недиспетчеризуемых возобновляемых источников в единой энергетической системе ведет к уменьшению доли обычных энергоустановок, которые потенциально могут поддерживать баланс. Нормализовать работу энергосистемы можно путем дублирования мощности недиспетчеризуемых источников эквивалентной мощностью источников с малым временем пуска, например, дизель-генераторами. Такой подход позволяет полностью компенсировать все возмущения в системе, но его стоимость должна учитываться при анализе экономической эффективности возобновляемых источников.