Праці міжнародного геометричного центру (Proceedings of the International Geometry Center)
Постійне посилання на фонд
Переглянути
Перегляд Праці міжнародного геометричного центру (Proceedings of the International Geometry Center) за Автор "Anna Kravchenko, Sergiy Maksymenko"
Зараз показуємо 1 - 1 з 1
Результатів на сторінці
Налаштування сортування
- ДокументAutomorphisms of Kronrod-Reeb graphs of Morse functions on 2-sphere(2019) Anna Kravchenko, Sergiy MaksymenkoLet $M$ be a compact two-dimensional manifold and, $f in C^{infty}(M, R)$ be a Morse function, and $Gamma$ be its Kronrod-Reeb graph.Denote by $O(f)={f o h | h in D(M)}$ the orbit of $f$ with respect to the natural right action of the group of diffeomorphisms $D(M)$ onC^{infty}$, and by $S(f)={hin D(M) | f o h = f }$ the coresponding stabilizer of this function.It is easy to show that each $hin S(f)$ induces an automorphism of the graph $Gamma$.Let $D_{id}(M)$ be the identity path component of $D(M)$, $S'(f) = S(f) cap D_{id}(M)$ be the subgroup of $D_{id}(M)$ consisting of diffeomorphisms preserving $f$ and isotopic to identity map, and $G$ be the group of automorphisms of the Kronrod-Reeb graph induced by diffeomorphisms belonging to $S'(f)$. This group is one of key ingredients for calculating the homotopy type of the orbit $O(f)$. In the previous article the authors described the structure of groups $G$ for Morse functions on all orientable surfacesdistinct from $2$-torus and $2$-sphere. The present paper is devoted to the case $M = S^2$. In this situation $Gamma$ is always a tree, and therefore all elements of the group $G$ have a common fixed subtree $Fix(G)$, which may even consist of a unique vertex. Our main result calculates the groups $G$ for all Morse functions $f: S^2 to R$ whose fixed subtree $Fix(G)$ consists of more than one point.