On weakly 1-convex sets in the plane

Ескіз недоступний
Дата
2023
Назва журналу
Номер ISSN
Назва тому
Видавець
Анотація
The present work considers the properties of generally convex sets in the plane known as weakly 1-convex. An open set is called weakly 1-convex if for any boundary point of the set there exists a straight line passing through this point and not intersecting the given set. A closed set is called weakly 1-convex if it is approximated from the outside by a family of open weakly 1-convex sets. A point of the complement of a set to the whole plane is called a 1-nonconvexity point of the set if any straight passing through the point intersects the set. It is proved that if an open, weakly 1-convex set has a non-empty set of 1-nonconvexity points, then the latter set is also open. It is also shown that the non-empty interior of a closed, weakly 1-convex set in the plane is weakly 1-convex.
Опис
Ключові слова
Бібліографічний опис