Модель взаимосвязи геометрии ветвей термоэлементов и показателей надежности при проектировании двухкаскадных охладителей в режиме минимума интенсивности отказов
dc.contributor.author | Ю. И. Журавлев | |
dc.date.accessioned | 2018-12-19T14:40:13Z | |
dc.date.available | 2018-12-19T14:40:13Z | |
dc.date.issued | 2017 | |
dc.description.abstract | Рассмотрен конструктивный метод повышения показателей надежности (интенсивности отказов и вероятности безотказной работы) двухкаскадных термоэлектрических охлаждающих устройств в режиме минимума интенсивности отказов. В двухкаскадных охлаждающих устройствах существенно взаимное влияние каскадов, повышение перепада температур, поэтому требуется анализ связи показателей надежности с энергетическими показателями и конструктивными параметрами охладителя. Вероятность безотказной работы охладителя обусловлена, в первую очередь, термоэлектрическими элементами, поскольку их количество значительно, они включены последовательно, а результирующая вероятность безотказной работы определяется произведением вероятностей всех составляющих термоэлементов. Основным параметром термоэлектрического элемента является «геометрия» – отношение высоты термоэлемента к площади его поперечного сечения. Целью исследований явилось повышение показателей надежности двухкаскадного термоэлектрического охлаждающего устройства за счет вариации геометрии термоэлементов и их распределений в каскадах в рабочем диапазоне перепадов температур функционирования охладителя в режиме минимума интенсивности отказов. Для достижения этой цели решены задачи: создание модели связи показателей надежности с конструктивными параметрами и энергетическими показателями охладителя; определение значений показателей надежности термоэлектрического охладителя при различных значениях геометрии термоэлементов, перепадов температур и тепловой нагрузки. Разработана математическая модель двухкаскадного термоэлектрического охладителя, связывающая показатели надежности с энергетическими показателями и конструктивными параметрами термоэлементов в рабочем диапазоне температур функционирования изделия, обеспечивающая возможность проектирования термоэлектрических охладителей повышенной надежности. Анализ результатов моделирования показал, что при заданном перепаде температур и тепловой нагрузке уменьшение отношения высоты термоэлемента к его поперечному сечению: увеличивается величина максимального рабочего тока в каскадах; уменьшается суммарное количество термоэлементов; уменьшается общее падение напряжения; уменьшается интенсивность отказов и увеличивается вероятность безотказной работы термоэлектрического охладителя. С ростом температуры для различных значений геометрии термоэлементов и заданной тепловой нагрузке: уменьшаются холодильный коэффициент; увеличивается отношение количества термоэлементов в каскадах; увеличивается относительный перепад температуры в каскадах и рабочий ток; увеличивается интенсивность отказов. Отношение количества термоэлементов в каскадах существенно зависит от перепада температуры с резким возрастанием при больших перепадах температур. Суммарное количество термоэлементов в диапазоне умеренных перепадов температур изменяется незначительно, однако существенно зависит от геометрии ветвей термоэлементов. Зависимость относительной интенсивности отказов от перепада температур имеет явно выраженный нелинейный характер и возрастает в диапазоне высоких температурных перепадов. Практическим результатом исследований явилось то, что для двухкаскадных охладителей с одинаковой геометрией ветвей термоэлементов в каскадах уменьшением отношения высоты термоэлемента к площади поперечного сечения можно в 2—10 раз уменьшить интенсивность отказов и повысить вероятность безотказной работы. | |
dc.identifier.issn | 0453-8307 | |
dc.identifier.uri | https://card-file.ontu.edu.ua/handle/123456789/6458 | |
dc.identifier.uri | https://doi.org/10.15673/ret.v53i4.710 | |
dc.source | Refrigeration Engineering and Technology | |
dc.title | Модель взаимосвязи геометрии ветвей термоэлементов и показателей надежности при проектировании двухкаскадных охладителей в режиме минимума интенсивности отказов |