FriML - music generation using machine learning
dc.contributor.author | Kania, W. | |
dc.contributor.author | Kłapcińska, E. | |
dc.contributor.author | Groblewski, M. | |
dc.date.accessioned | 2021-05-05T08:21:08Z | |
dc.date.available | 2021-05-05T08:21:08Z | |
dc.date.issued | 2021 | |
dc.description | Kania W. FriML - music generation using machine learning / W. Kania, E. Kłapcińska, M. Groblewski ; advisors : P. Duch, T. Jaworski // Black Sea Science 2021 : proc. of the Intern. Competition of Student Scientific Works / Odessa National Academy of Food Technologies ; eds. B. Yegorov, M. Mardar [et al.]. – Odessa: ONAFT, 2021. – P. 481–489 : tabl., fig. – Ref.: 12 tit. | ru_RU |
dc.description.abstract | The following report aims to describe our song generation application and all the means that were used to create it. The purpose of the application is to enable anyone to generate songs. These songs are generated by artificial intelligence which is based on various models. The paper also describes all the methods that were used in order to train our models that are later used by the AI. | ru_RU |
dc.identifier.uri | https://card-file.ontu.edu.ua/handle/123456789/17586 | |
dc.language.iso | en_US | ru_RU |
dc.subject | machine learning | ru_RU |
dc.subject | LSTM | ru_RU |
dc.subject | RNN | ru_RU |
dc.subject | music | ru_RU |
dc.subject | music generation | ru_RU |
dc.subject | midi | ru_RU |
dc.title | FriML - music generation using machine learning | ru_RU |
dc.type | Article | ru_RU |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- Black_Sea_Sci_2021_Kania.pdf
- Розмір:
- 3 MB
- Формат:
- Adobe Portable Document Format
- Опис:
Ліцензійна угода
1 - 1 з 1
Вантажиться...
- Назва:
- license.txt
- Розмір:
- 1.71 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: