A Physics-Based Estimation of Mean Curvature Normal Vector for Triangulated Surfaces

dc.contributor.authorSudip Kumar Das, Mirza Cenanovic, Junfeng Zhang
dc.date.accessioned2019-09-17T14:45:11Z
dc.date.available2019-09-17T14:45:11Z
dc.date.issued2019
dc.description.abstractIn this note, we derive an approximation for the mean curvature normal vector on vertices of triangulated surface meshes from the Young-Laplace equation and the force balance principle. We then demonstrate that the approximation expression from our physics-based derivation is equivalent to the discrete Laplace-Beltrami operator approach in the literature. This work, in addition to providing an alternative expression to calculate the mean curvature normal vector, can be further extended to other mesh structures, including non-triangular and heterogeneous meshes.
dc.identifier.issn2409-8906
dc.identifier.urihttps://card-file.ontu.edu.ua/handle/123456789/9769
dc.identifier.urihttps://doi.org/10.15673/tmgc.v12i1.1377
dc.sourceProceedings of the International Geometry Center
dc.titleA Physics-Based Estimation of Mean Curvature Normal Vector for Triangulated Surfaces
Файли
Зібрання