Quasiconformal mappings and curvatures on metric measure spaces

dc.contributor.authorJialong Deng
dc.date.accessioned2023-05-10T13:25:22Z
dc.date.available2023-05-10T13:25:22Z
dc.date.issued2023
dc.description.abstractIn an attempt to develop higher-dimensional quasiconformal mappings on metric measure spaces with curvature conditions, i.e. from Ahlfors to Alexandrov, we show that for n≥2 a noncollapsed RCD(0,n) space with Euclidean volume growth is an n-Loewner space and satisfies the infinitesimal-to-global principle.
dc.identifier.issn2409-8906
dc.identifier.urihttps://card-file.ontu.edu.ua/handle/123456789/25015
dc.sourceProceedings of the International Geometry Center
dc.titleQuasiconformal mappings and curvatures on metric measure spaces
Файли
Зібрання