Quasiconformal mappings and curvatures on metric measure spaces
dc.contributor.author | Jialong Deng | |
dc.date.accessioned | 2023-05-10T13:25:22Z | |
dc.date.available | 2023-05-10T13:25:22Z | |
dc.date.issued | 2023 | |
dc.description.abstract | In an attempt to develop higher-dimensional quasiconformal mappings on metric measure spaces with curvature conditions, i.e. from Ahlfors to Alexandrov, we show that for n≥2 a noncollapsed RCD(0,n) space with Euclidean volume growth is an n-Loewner space and satisfies the infinitesimal-to-global principle. | |
dc.identifier.issn | 2409-8906 | |
dc.identifier.uri | https://card-file.ontu.edu.ua/handle/123456789/25015 | |
dc.source | Proceedings of the International Geometry Center | |
dc.title | Quasiconformal mappings and curvatures on metric measure spaces |