Use of neural networks to maximize the effectiveness of shot putters training

dc.contributor.authorKadatskyi, M.
dc.date.accessioned2022-02-10T11:02:30Z
dc.date.available2022-02-10T11:02:30Z
dc.date.issued2021
dc.descriptionKadatskyi M. Use of neural networks to maximize the effectiveness of shot putters training / M. Kadatskyi ; sci. advisor O. Melnykov // Black Sea Science 2021. Information Technology, Automation and Robotics : рroc. of the Intern. Competition of Student Scientific Works / Odessa Nat. Acad. of Food Technologies ; eds. B. Yegorov, M. Mardar, S. Kotlyk [et al.]. – Odessa : ONAFT, 2021. – P. 51-61 : tabl., fig. – Ref.: 10 tit.ru_RU
dc.description.abstractThe main factors influencing the results of shot put are considered. The necessity of using modern methods for solving forecasting problems is substantiated. The method of artificial neural networks with different architecture is proposed to solve the following problems: finding the percentage of correction of the shot put technique, finding the subtype of the technique, the activation function of the sigmoid and the algorithm of reverse propagation of errors for learning networks. A software package has been developed that allows to find the approximate result of pushing the shot using the technique of "glide" and "from the ground". Examples of calculations in the environment Deductor Studio Lite are given.ru_RU
dc.identifier.urihttps://card-file.ontu.edu.ua/handle/123456789/19633
dc.language.isoen_USru_RU
dc.subjectshot putru_RU
dc.subjectneural networkru_RU
dc.subjectpredictionru_RU
dc.subjectreverse search methodru_RU
dc.subjectphysical cultureru_RU
dc.subjectathleticsru_RU
dc.titleUse of neural networks to maximize the effectiveness of shot putters trainingru_RU
dc.typeArticleru_RU
Файли
Контейнер файлів
Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
Black_Sea_Sci_21_ Inf_tech_Kadatskyi.pdf
Розмір:
4.41 MB
Формат:
Adobe Portable Document Format
Опис:
Ліцензійна угода
Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
license.txt
Розмір:
1.71 KB
Формат:
Item-specific license agreed upon to submission
Опис:
Зібрання