Bypassing dynamical systems: a simple way to get the box-counting dimension of the graph of the Weierstrass function
dc.contributor.author | Claire David | |
dc.date.accessioned | 2018-12-19T13:13:40Z | |
dc.date.available | 2018-12-19T13:13:40Z | |
dc.date.issued | 2018 | |
dc.description.abstract | In the following, bypassing dynamical systems tools, we propose a simple means of computing the box dimension of the graph of the classical Weierstrass function defined, for any real number~$x$, by[{mathcal W}(x)= sum_{n=0}^{+infty} lambda^n,cos left ( 2, pi,N_b^n,x right),]where $lambda$ and $N_b$ are two real numbers such that $0 <lambda<1$, $N_b,in,N$ and $lambda,N_b >1$, using a sequence a graphs that approximate the studied one. | |
dc.identifier.issn | 2409-8906 | |
dc.identifier.uri | https://card-file.ontu.edu.ua/handle/123456789/6244 | |
dc.identifier.uri | https://doi.org/10.15673/tmgc.v11i2.1028 | |
dc.source | Proceedings of the International Geometry Center | |
dc.title | Bypassing dynamical systems: a simple way to get the box-counting dimension of the graph of the Weierstrass function |