Bypassing dynamical systems: a simple way to get the box-counting dimension of the graph of the Weierstrass function

dc.contributor.authorClaire David
dc.date.accessioned2018-12-19T13:13:40Z
dc.date.available2018-12-19T13:13:40Z
dc.date.issued2018
dc.description.abstractIn the following, bypassing dynamical systems tools, we propose a simple means of computing the box dimension of the graph of the classical Weierstrass function defined, for any real number~$x$, by[{mathcal W}(x)= sum_{n=0}^{+infty} lambda^n,cos left ( 2, pi,N_b^n,x right),]where $lambda$ and $N_b$ are two real numbers such that $0 <lambda<1$, $N_b,in,N$ and $lambda,N_b >1$, using a sequence a graphs that approximate the studied one.
dc.identifier.issn2409-8906
dc.identifier.urihttps://card-file.ontu.edu.ua/handle/123456789/6244
dc.identifier.urihttps://doi.org/10.15673/tmgc.v11i2.1028
dc.sourceProceedings of the International Geometry Center
dc.titleBypassing dynamical systems: a simple way to get the box-counting dimension of the graph of the Weierstrass function
Файли
Зібрання