Логотип репозиторію
  • English
  • Yкраї́нська
  • Увійти
    Новий користувач? Зареєструйтесь.Забули пароль?
Логотип репозиторію
  • Фонди та зібрання
  • Пошук за критеріями
Користувачам
  • Положення
  • Авторський договір
  • Форма для зовнішніх авторів
  • Авторська етика
  • Глосарій
  • English
  • Yкраї́нська
  • Увійти
    Новий користувач? Зареєструйтесь.Забули пароль?
  1. Головна
  2. Переглянути за автором

Перегляд за Автор "Koji Matsumoto"

Зараз показуємо 1 - 3 з 3
Результатів на сторінці
Налаштування сортування
  • Документ
    A (CHR)3-flat trans-Sasakian manifold
    (2019) Koji Matsumoto
    In [4] M. Prvanovic considered several curvaturelike tensors defined for Hermitian manifolds. Developing her ideas in [3], we defined in an almost contact Riemannian manifold another new curvaturelike tensor field, which is called a contact holomorphic Riemannian curvature tensor or briefly (CHR)3-curvature tensor. Then, we mainly researched (CHR)3-curvature tensor in a Sasakian manifold. Also we proved, that a conformally (CHR)3-flat Sasakian manifold does not exist. In the present paper, we consider this tensor field in a trans-Sasakian manifold. We calculate the (CHR)3-curvature tensor in a trans-Sasakian manifold. Also, the (CHR)3-Ricci tensor ρ3  and the (CHR)3-scalar curvature τ3  in a trans-Sasakian manifold have been obtained. Moreover, we define the notion of the (CHR)3-flatness in an almost contact Riemannian manifold. Then, we consider this notion in a trans-Sasakian manifold and determine the curvature tensor, the Ricci tensor and the scalar curvature. We proved that a (CHR)3-flat trans-Sasakian manifold is a generalized   ɳ-Einstein manifold. Finally, we obtain the expression of the curvature tensor with respect to the Riemannian metric g of a trans-Sasakian manifold, if the latter is (CHR)3-flat.
  • Документ
    A new curvature-like tensor in an almost contact Riemannian manifold
    (2017) Koji Matsumoto
    In a M. Prvanović’s paper [5], we can find a new curvature-like tensor in an almost Hermitian manifold.In this paper, we define a new curvature-like tensor, named contact holomorphic Riemannian, briefly (CHR), curvature tensor in an almost contactRiemannian manifold. Then, using this tensor, we mainly research (CHR)-curvature tensor in a Kenmotsu and a Sasakian manifold. We introducethe flatness of a (CHR)-curvature tensor and show that a Kenmotsu anda Sasakian manifold with a flat (CHR)-curvature tensor is flat, see Theorems3.1 and 4.1. Next, we introduce the notion of an (CHR)-n-Einstein inan almost contact Riemannian manifold. In particular, in a Sasakian or aKenmotsu manifold, a (CHR)-n-Einstein manifold is n-Einstein, see Theorem5.3. Finally, from this tensor, we introduce a notion of a (CHR)-spaceform in an almost contact Riemannian manifold. In particular, if a Kenmotsuand a Sasakian manifold are (CHR)-space form, then the (CHR)-curvaturetensor satisfies a special equation, see Theorems 6.2 and 7.1.
  • Документ
    Warped product semi-slant submanifolds in locally conformal Kaehler manifolds
    (2017) Koji Matsumoto
    In 1994, in [13], N. Papaghiuc introduced the notion of semi-slant submanifold in a Hermitian manifold which is a generalization of CR- and slant-submanifolds. In particular, he considered this submanifold in Kaehlerian manifolds, [13]. Then, in 2007, V. A. Khan and M. A. Khan considered this submanifold in a nearly Kaehler manifold and obtained interesting results, [11]. Recently, we considered semi-slant submanifolds in a locally conformal Kaehler manifold and gave a necessary and sufficient conditions for two distributions (holomorphic and slant) to be integrable. Moreover, we considered these submanifolds in a locally conformal Kaehler space form, [4]. In this paper, we define 2-kind warped product semi-slant submanifolds in a locally conformal Kaehler manifold and consider some properties of these submanifolds.

DSpace software copyright © 2002-2025 LYRASIS

  • Налаштування куків
  • Угода користувача
  • Зворотний зв’язок