Логотип репозиторію
  • English
  • Yкраї́нська
  • Увійти
    Новий користувач? Зареєструйтесь.Забули пароль?
Логотип репозиторію
  • Фонди та зібрання
  • Пошук за критеріями
Користувачам
  • Положення
  • Авторський договір
  • Форма для зовнішніх авторів
  • Авторська етика
  • Глосарій
  • English
  • Yкраї́нська
  • Увійти
    Новий користувач? Зареєструйтесь.Забули пароль?
  1. Головна
  2. Переглянути за автором

Перегляд за Автор "Олександр Михайлович Стоколос, Jimmy Dillies, Dmitriy Dmitrishin, Andrey Smorodin"

Зараз показуємо 1 - 1 з 1
Результатів на сторінці
Налаштування сортування
  • Документ
    On the Koebe Quarter Theorem for Polynomials
    (2022) Олександр Михайлович Стоколос, Jimmy Dillies, Dmitriy Dmitrishin, Andrey Smorodin
    The Koebe One Quarter Theorem states that the range of any Schlicht function contains the centered disc of radius 1/4 which is sharp due to the value of the Koebe function at −1. A natural question is finding polynomials that set the sharpness of the Koebe Quarter Theorem for polynomials. In particular, it was asked in [7] whether Suffridge polynomials [15] are optimal. For polynomials of degree 1 and 2 that is obviously true. It was demonstrated in [10] that Suffridge polynomials of degree 3 are not optimal and a promising alternative family of polynomials was introduced. These very polynomials were actually discovered earlier independently by M. Brandt [3] and D. Dimitrov [9]. In the current article we reintroduce these polynomials in a natural way and make a far-reaching conjecture that we verify for polynomials up to degree 6 and with computer aided proof up to degree 52. We then discuss the ensuing estimates for the value of the Koebe radius for polynomials of a specific degree.

DSpace software copyright © 2002-2025 LYRASIS

  • Налаштування куків
  • Угода користувача
  • Зворотний зв’язок