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Extension theorems for holomorphic bundles on complex
manifolds with boundary

Andrei Teleman
(Aix Marseille Univ, CNRS, 12M, Marseille, France)
E-mail: andrei.teleman@univ-amu.fr

We begin with the following important result due to Donaldson [Do] for Kéhler; and Xi [Xi]
for general Hermitian complex manifolds with boundary:

Theorem 1. Let )__( be a compact complex manifold with non-empty boundary X, g be o Her-
mitian metric on X and € be a holomorphic bundle on X. Let h be adHermitian metric on the
restriction E|gx. There exists a unique Hermitian metric H on £ satisfying the conditions

A, Fi =0, Hlpx = h,
where Fy € A2(X,End(€)) denotes the curvature of the Chex, connection associated with H.

Note that the map H — A,y is a non-linear second order elliptic differential operator, so the
system AyFyg =0, H|sg = h can be viewed as a non-linear Dirichlet problem. The theorem of
Donaldson and Xi states that this non-linear Dirichlct problem 1s always uniquely sovable.

Note also that the analogue statement for closed manifolds (i.e. inthe case 0X = ()) does
not hold. Indeed, the classical Kobayashi-Hitehin €oxrespondence states that, for a holmorphic
bundle £ on a closed Hermitian manifold (X, g), the equation AgFy = 0 is solvable if and only if
deg,(£) = 0 (which is a topological condition if g is Kéhlerian) and £ is polystable with respect
to g (see |LT]).

Recall that a unitary connection V on a Hermitian.differentiable bundle (17, I1) on X is called
Hermitian Yang-Mills if A Py = 0, F&* = 0. In the classical case dimg(X) = 2 — which plays
a fundamental role in Donaldson theory — these conditions are equivalent to the anti-self-duality
condition Fg = 0.

In [Do| Donaldson showsithattTheorem 1 has important geometric consequences:

Corollary 2. Let X be o compact complexr manifold with non-empty boundary, g be a Hermitian
metric on X _and (E, H) be o Heummitian differentiable bundle on X. There exists a natural
bijection between:

(1) thexmoduli space of pairs (£,0) consisting of a holomorphic structure £ on E and a dif-
ferentiable trivialization 6 of F|yx,

(2) the moduli space of pairs (V,T) consisting of a Hermitian Yang-Mills connection on (17, 1)
and @ differentiable unitary trivialization T of E|yx.

In other words, the moduli space of boundary framed holomorphic structures on E can be
identifiedwith the moduli space of boundary framed Hermitian Yang-Mills connection on (F, H).

In the special case when X is the closure of a strictly pseudoconvex domain (with smooth
boundary) in €", Donaldson states the following result which gives an interesting geometric
interpretation of the quotient C>*(0.X, GL(r,C))/O>®(X,GL(r,C)) of the group of smooth maps
90X — GL(r, C) by the subgroup formed by those such maps which extend smoothly and formally
holomorphically to X:

Corollary 3. Let O=(X,GL(r,C)) be the group of smooth, formally holomorphic GL(r, C)-valued
maps on X, identified with a subgroup of C*(0X,GL(r,C)) via the restriction map.
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There exists a natural bijection between the moduli space of boundary framed Hermitian Yang-

Mills connections on the trivial U(r)-bundle on X and the quotient C>*(0X, GL(r,C))/O= (X, GL(r, C)).

The idea of proof: Taking into account Corollary 2, it suffices to construct a bijection between
the quotient C*(0.X, GL(r,C))/O>®(X, GL(r,C)) and the moduli space of boundary framed holo-
morphic structures on the trivial differentiable bundle X x C". The construction is very natural:
one maps the congruence class [f] of a smooth map f : X — GL(r,C) to the gauge class of
the pair (the trivial holomorphic structure on X x C’, f). The main difficulty iste prove the
surjectivity of the map obtained in this way. This follows from the following existenece result:

Proposition 4. Let X be the closure of a strictly pseudoconvex domain (with smooth boundary)
in C" and & be a smooth, topologically trivial holomorphic bundle on X #Then E admuts o global
smooth trivialization on X which is holomorphic on X.

The statement follows using Grauert’s classification theorem for bundles on Stein manifolds
and the following extension theorem, which is proved in [Do| only for n = 2:

Proposition 5. Let X be the closure of a relatively compact strictly psevdoconwer domain (with
smooth boundary) in C" and £ be a smooth, topologically trivial helemorphic bundle on X . Then
E extends holomorphically to an open neighborhood Usof X in C™.

In my talk I will explain the idea of proof of the following general extension theorem (see |T]):

Theorem 6. Let M be a complex manifold, X &€ M an open submanifold of M whose closure X
has smooth, strictly pseudoconvex boundarg tn M. Let G\ be a eomplexr Lie group, m: QQ — M a
differentiable principal G-bundle on M andJ a holomorphie structure on the restriction P :— Q|x.

There exists an open neighborhood M' ef X in M and a holomorphic structure J' on Q|
which extends J.

The proof uses methods andstechniques introduced in [HiNa| and [Cal].

In the special case whendW = C" and G = GL(r,C) one obtains as corollary Proposition 5
(and hence Corollary 3) in full generality. Moreover, one also obtains the following generalization
of this corollary:

Theorem 7. LetdG = K© be the complexification of a compact Lie group K, X be a compact
Stein manifold with, boundary ondyg bé'a Hermitian metric g on X. The moduli space of boundary
framed Hermition Yamg-Mills conneetions on the trivial K-bundle on (X, g) can be identified with
the quotient C=(0X , GYO> (X, G).
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