

LIST OF TOPICS

- Algebraic methods in geometry
- Differential geometry in the large
- Geometry and topology of differentiable manifolds
- General and algebraic topology
- Dynamical systems and their applications
- Geometric and topological methods in natural sciences

ORGANIZERS

- Ministry of Education and Science of Ukraine
- Odesa National University of Technology, Ukraine
- Institute of Mathematics of the National Academy of Sciences of Ukraine
- Taras Shevchenko National University of Kyiv
- International Geometry Center
- Kyiv Mathematical Society

SCIENTIFIC COMMITTEE

Co-Chairs:	Maksymenko S. (Kyiv, Ukraine)	Prishlyak A. (Kyiv, Ukraine)
Balan V.	Fedchenko Yu.	Matsumoto K.
(Bucharest, Romania)	$(Odesa,\ Ukraine)$	(Yamagata, Japan)
Banakh T.	Karlova O.	Mormul P.
(Lviv, Ukraine)	(Chernivtsi, Ukraine)	(Warsaw, Poland)
Bolotov D.	Kiosak V.	Plachta L.
(Kharkiv, Ukraine)	(Odesa, Ukraine)	(Krakov, Poland)
Cherevko Ye.	Konovenko N.	Polulyakh Ye.
(Odesa, Ukraine)	$(Odesa,\ Ukraine)$	(Kyiv, Ukraine)
		Savchenko O. (Kherson, Ukraine)

Administrative committee

- Egorov B., chairman, rector of the ONTU;
- Povarova N., deputy chairman, Pro-rector for scientific work of the ONTU;
- Mardar M., Pro-rector for scientific-pedagogical work and international communications of the ONTU;
- Kotlik S., Director of the P.M. Platonov Educational-scientific institute of computer systems and technologies "Industry 4.0";

ORGANIZING COMMITEE

Konovenko N. Fedchenko Yu. Osadchuk Ye. Soroka Yu. Maksymenko S. Cherevko Ye. Sergeeva O.

About solvability of the matrix equation AX = B over Bezout domains

Volodymyr M. Prokip

(Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, L'viv, Ukraine) E-mail: v.prokip@gmail.com

Let R be a Bezout domain with identity $e \neq 0$, i.e. R is an integral domain in which every finite generated ideal is principal. Further, let $R_{m,n}$ denote the set of $m \times n$ matrices over R, and $GL(n, \mathbf{R})$ be the set of $n \times n$ invertible matrices over \mathbf{R} . In what follows, I_n is the identity $n \times n$ matrix, $0_{m,k}$ is the zero $m \times k$ matrix, $d_i(A) \in \mathbb{R}$ is an ideal generated by the *i*-th order minors of the matrix $A \in \mathbb{R}_{m,n}$, $i = 1, 2, \dots, \min\{m, n\}$.

Let $A \in \mathbb{R}_{m,n}$ and $B \in \mathbb{R}_{m,k}$ be nonzero matrices. Consider the nonhomogeneous matrix equation

$$AX = B, (1)$$

where X is unknown matrix in $R_{n,k}$. Denote by $A_B = \begin{bmatrix} A & B \end{bmatrix} \in R_{m,n+k}$ the extended matrix of the linear equations (1). It is known (see [1], [3], [4], [6]) that the equation (1) over a Bezout domain R is solvable if and only if rank $A = \operatorname{rank} A_B = r$ and $d_i(A) = d_i(A_B)$ for all $i = 1, 2, \dots, r$.

The problem of solvability of the equation (1) has drawn the attention of many mathematicians (see [1]–[12] and references therein). This is explained not only by the theoretical interest to this problem ([1], [3], [4], [6], [8]–[11]), but also by the existence of numerous applied problems connected with the necessity of solution of linear matrix equations ([2], [5], [7], [12]). It may be noted, that the equation (1) over Bezout domains is important in automatic control theory [2].

1. On application of the Hermite Normal Form. In the Bezout domain R we fix a set of non-associated elements R. Every non-associated element $a \in R$ we associated with a complete system of residues modulo ideal (a). Let $A \in \mathbb{R}_{m,n}$ and rank A = r. Further, we assume that the first row of the matrix A is nonzero. For the matrix A there exists $W \in GL(n, \mathbb{R})$ such that

$$AW = H_A = \begin{bmatrix} H_1 & 0_{m_1, n-1} \\ H_2 & 0_{m_2, n-2} \\ \vdots & \ddots & \vdots \\ H_r & 0_{m_r, n-r} \end{bmatrix} = \begin{bmatrix} H(A) & 0_{m, n-r} \end{bmatrix}$$

is a lower block-triangular matrix, where $H(A) \in \mathbb{R}_{m,r}$, $H_1 = \begin{bmatrix} h_1 \\ * \end{bmatrix} \in \mathbb{R}_{m_1,1}$, $H_2 = \begin{bmatrix} h_{21} & h_2 \\ * & * \end{bmatrix} \in \mathbb{R}_{m_2,2}$, ..., $H_r = \begin{bmatrix} h_{r_1} & \dots & h_{r,r-1} & h_r \\ * & * & * \end{bmatrix} \in \mathbb{R}_{r,r}$ and $m_1 + m_2 + \dots + m_r = m$. The elements h_i belong to the set of new ages i + 1.

$$R_{m_2,2}, \ldots, H_r = \begin{bmatrix} h_{r1} & \ldots & h_{r,r-1} & h_r \\ * & * & * \end{bmatrix} \in R_{r,r} \text{ and } m_1 + m_2 + \cdots + m_r = m.$$
 The elements h_r

belong to the set of non-associated elements $\widetilde{\mathbf{R}}$ for all $i=1,2,\ldots,r$. Moreover, in the first rows $|h_{i1} \dots h_{i,i-1}|$ of the matrices H_i , $i \geq 2$, the elements h_{ij} belong to a complete system of residues modulo ideal (h_i) for all $j=1,2,\ldots,i-1$. The lower block-triangular matrix H_A is called the (right) Hermite normal form of the matrix A and it is uniquely defined for A (see [3]).

In this parch we propose necessary and sufficient conditions of solvability for the equation (1) over a Bezout domain in terms of the Hermite normal forms of $m \times (n+k)$ matrices $A = 0_{m,k}$ and $[A \ B]$. A method for finding its solutions is also given. In what follows, we assume that the fest row of the matrix A is nonzero.

Theorem 1. Let $A \in \mathbb{R}_{m,n}$ and $B \in \mathbb{R}_{m,k}$. The matrix equation AX = B is solvable over a Bezout domain R if and only if the Hermite normal forms of matrices $[A \quad 0_{m,k}]$ and $[A \quad B]$ are coincide.

It is easy to see that matrix equation (1) is solvable over a Bezout domain R if and only if the matrix equation H(A)Y = B is solvable over R. Let $Y_0 \in \mathbb{R}_{r,k}$ be the solution of H(A)Y = B.

- Then for arbitrary matrix $P \in \mathbb{R}_{n-r,k}$ the matrix $X_P = W^{-1} \begin{bmatrix} Y_0 \\ P \end{bmatrix}$ is a general solution of equation (1). Theoretically speaking, the solution $X_0 = W^{-1} \begin{bmatrix} Y_0 \\ 0_{m-r,n} \end{bmatrix}$ of equation (1) can be written as the matrix expression $X_0 = TX_P$, where $T \in \mathbb{R}_{n,n}$. Thus, X_P is the right divisor of X_0 for an arbitrary matrix $P \in \mathbb{R}_{n,n}$. arbitrary matrix $P \in \mathbb{R}_{n-r,k}$. Given the solution X_0 , we determine all possible ranks of other solutions of the equation (1), i.e. $\operatorname{rank} B \leq \operatorname{rank} X_P \leq n + \operatorname{rank} B - \operatorname{rank} A$.
- 2. A method of matrix transformations. In this part we apply matrix transformations for established conditions under which the equation (1) is solvable.

Let $A \in \mathcal{R}_{m,n}$ and $B \in \mathcal{R}_{m,k}$ be nonzero matrices and let rank $A = r \geq 1$. For A there exist matrices $U \in GL(m, \mathbb{R})$ and $V \in GL(n, \mathbb{R})$ such that $UAV = \begin{bmatrix} C & 0_{r,n-r} \\ 0_{m-r,r} & 0_{m-r,n-r} \end{bmatrix}$, where $C \in \mathcal{R}_{r,r}$. It is clear that $\det C = c \neq 0$. In what follows $C^* = \operatorname{Adj} C$ means the classical adjoint matrix of the matrix C, i.e. $C^*C = cI_r$. Based on the above, we obtain the following theorem.

Theorem 2. The matrix equation AX = B is solvable over a Bezout domain R if and only if

 $UB = \begin{bmatrix} D \\ 0_{m-r,k} \end{bmatrix}, \text{ where } D \in \mathbb{R}_{r,k}, \text{ and } C^*D = cG, \text{ where } G \in \mathbb{R}_{r,k}.$ If the equation AX = B is solvable, then for arbitrary matrix $Q \in \mathbb{R}_{m-r,k}$ the matrix $X_Q = U^{-1} \begin{bmatrix} G \\ Q \end{bmatrix}$ is a general solution of equation AX = B.

From Theorem 2 we obtain the following comment. Let $A, B \in \mathbb{R}_{m,n}$ be nonzero matrices and let rank A < n. Suppose the matrix equation AX = B is solvable and $X_Q \in \mathbb{R}_{n,n}$ is its general solution. Then AX = B has solutions $\widetilde{X}_i \in \mathbb{R}_{n,n}$, $i = 1, 2, \ldots$, such that $X_Q = \widetilde{X}_i T_i$, where $T_i \in \mathbf{R}_{n,n}$.

Presented results above can be extended to linear nonhomogeneous equations over commutative rings of a more general algebraic nature.

References

- [1] Camion P., Levy L.S., Mann H.B. Linear equations over a commutative ring. J. Algebra. 18(3): 432–446,
- [2] Emre E, Khargonekar P. Pole placement for linear systems over Bezout domains. IEEE Trans Automat Control. 29(1): 90-91, 1984.
- [3] Friedland S. Matrices. University of Illinois at Chicago, Chicago, 2010.
- [4] Hermida-Alonso J. A. On linear algebra over commutative rings. Handbook of Algebra. 3: 3—61, 2003.
- [5] Kaczorek T. Polynomial and rational matrices. Applications in dynamical systems theory, communications and control engineering. Dortrecht.: Springer, 2007.
- Kazimirskii P.S. Consistency conditions for the inhomogeneous system of linear equations in a noncommutative ring of principal ideals, Nauch. Zap. Lviv. Politekh. Inst., Ser. Fiz.-Mat. 30(1): 45-51, 1955.
- Mulders T., Storjohann A. Certified dense linear system solving. J. Symbol. Comput. 37(4): 485–510, 2004.
- [8] Prokip V.M. On the solvability of a system of linear equations over the domain of principal ideals. Ukrainian $Mathe-matical\ Journal.\ 66(4): 633-638,\ 2014.$
- [9] Prokip V.M. The structure of symmetric solutions of the matrix equation AX = B over a principal ideal domain. *Inter. J. Analysis.* 2017. – T. 2017.
- [10] Prokip V.M. On the solvability of a system of matrix equations AX = B and BY = A over associative rings. J. Math. Sciences. 238(1): 22–32, 2019.
- [11] Uhlig F. On the matrix equation AX = B with applications to the generators of a controllability matrix. Linear Algebra Appl. 85: 203-209, 1987.

[12] Wu Y., Yang Y. Cramer's rule over residue class rings of Bézout domains. Linear Multilinear Algebra. 66(6): 1268-1276, 2018.

T. Obikhod The role of topological invariants in the study of the early evolution of the Universe	33
I. Ovtsynov O-spheroids in metric and linear normed spaces	34
T. Podousova, N. Vashpanova Infinitesimal deformations of surfaces of negative Gaussian curvature with a stationary Ricci tensor	37
A. Prishlyak Structures of optimal flows on the Boy's and Girl's surfaces	38
V.M. Prokip About solvability of the matrix equation $AX = B$ over Bezout domains	39
N. Saouli, F. Zouyed Regularization Method for a class of inverse problem	42
H. Sinyukova Broadening of some vanishing theorems of global character about holomorphically projective mappings of Kahlerian spaces to the noncompact but complete ones.	44
A. Skryabina, P. Stegantseva The weight of T_0 -topologies on n -element set that consistent with close to the discrete topology on $(n-1)$ -element set	45
F. Sokhatsky, I. Fryz On ternary assymetric medial top-quasigroups	46
Andrei Teleman Extension theorems for holomorphic bundles on complex manifolds with boundary	48
J. Ueki Recent progress in Iwasawa theory of knots and links	50
М. Гречнєва, П. Стєганцева Про тип грассманового образу поверхонь з плоскою нормальною зв'яністю простору Мінковського	52
В. Кіосак, Л. Кусік, В. Ісаєв Про існування гедезично симетричних псевдоріманових просторів	53
I. М. Курбатова, М. І. Піструіл Геометричні об'єкти, інваріантні відносно квазі-геодезичних відображень псевдо-ріманових просторів з узагальнено-рекурентною афінорною структурою	54
В. О. Мозель Автоморфні функції та алгебри двовимірних сингулярних інтегральних операторів	55
М. І. Піструіл, І. М. Курбатова Канонічні квазі-геодезичні відображення псевдо-ріманових просторів з рекурентно-параболічною структурою	56
С. І. Покась, А. О. Ніколайчук Геометрія наближення для простору афінної зв'язності	58
А.Соловйов , І.Курбатова , Ю.Хабарова Про 3F-планарні відображення псевдо-ріманових просторів	59
Т. О. Єрьоміна, О. А. Поварова Дослідження властивостей неперервних обмежених розв'язків систем нелінійних різницево-функціональних рівнянь у гіперболічному випадку	60