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About solvability of the matrix equation AX = B over
Bezout domains

Volodymyr M. Prokip
(Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, L’viv, Ukraine)
E-mail: v.prokip@gmail.com

Let R be a Bezout domain with identity e # 0, i.e. R is an integral domain in which every
finite generated ideal is principal. Further, let R,, ,, denote the set of m x n matrices over R, and
GL(n,R) be the set of n x n invertible matrices over R. In what follows, [gis the identity n x n
matrix, 0,,x is the zero m x k matrix, d;(A) € R is an ideal generated byithe 7—thierder minors
of the matrix A € Ry, 1 = 1,2,...,min{m,n}.

Let A € R,,,, and B € R, be nonzero matrices. Considersthe nonhomogeneous matrix
equation

AX = B, (1)
where X is unknown matrix in R, ;. Denote by Ap = [A B} € R, nir the extended matrix
of the linear equations (1). It is known (see [1], [3], [4], [6]) that the cquation (1) over a Bezout
domain R is solvable if and only if rank A = rank Ap < gand d(A) —di(Ap) foralli =1,2,... r.

The problem of solvability of the equation (1) has drawn,the attention of many mathematicians
(see [1]-[12] and references therein). This is_explained net.only by the theoretical interest to
this problem ([1], [3], [4], [6], [8]-[11]), butlso by theiexistence of numerous applied problems
connected with the necessity of solution of linear matrix equations (|2], [5], [7], [12]). It may be
noted, that the equation (1) over Bezout demains is impertant in automatic control theory [2].

1. On application of the Hermite Normal Form. In the Bezout domain R we fix a set of
non-associated elements R. Every non-assoeaiated element a € R we associated with a complete
system of residues modulo ideal (a). Let A € R, and rank A = r. Further, we assume that the
first row of the matrix A ismonzcro. For the matrix A there exists W € GL(n,R) such that

Hl Om.l,n,—l
AW, = | 8 Ozl () 0,
HT O'n’LT,TL—T’

is a lower, block-triangular matrix, where H(A) € R, H; = {{ﬂ € Ry 1, Hy = {hjl hQ] €

*
]17‘1 hr,r—l hrr
*

X % *k

Riso, o Hp= € R,, and my +mg + - -+ +m, = m. The elements h;

belong todhe set ofinon-associated elements R for all i = 1,2,...,r. Moreover, in the first rows
[hﬂ W hiia hi] of the matrices H;, ¢ > 2, the elements h;; belong to a complete system of
residues modulo ideal (h;) for all j = 1,2,...,i — 1. The lower block-triangular matrix H, is
called the (right) Hermite normal form of the matrix A and it is uniquely defined for A (see [3]).

In this parch we propose necessary and sufficient conditions of solvability for the equation (1)
over a Bezout domain in terms of the Hermite normal forms of m x (n + k) matrices [A 0y, ]
and [A BJ]. A method for finding its solutions is also given. In what follows, we assume that
the fest row of the matrix A is nonzero.

Theorem 1. Let A € R,,,,, and B € R,,, ;. The matriz equation AX = B is solvable over a
Bezout domain R if and only if the Hermite normal forms of matrices [A OmJg} and [A B} are
coincide.
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It is easy to see that matrix equation (1) is solvable over a Bezout domain R if and only if the
matrix equation H(A)Y = B is solvable over R. Let Y € R, be the solution of H(A)Y = B.

. . . Yol . . .
Then for arbitrary matrix P € R,,_, ;, the matrix Xp = w1 [ PO} is a general solution of equation

Om—nn
the matrix expression Xy = T'Xp, where 7" € R,,,,. Thus, Xp is the right divisor¢of X, for an
arbitrary matrix P € R,,_, . Given the solution X, we determine all possible ranks of other
solutions of the equation (1), i.e. rankB < rankXp < n + rankB — rankA.
2. A method of matrix transformations. In this part we apply matrix transformations
for established conditions under which the equation (1) is solvable.
Let A € R,,,, and B € R, be nonzero matrices and let rank#&d = r > 1. For A there

exist matrices U € GL(m,R) and V € GL(n,R) such that U AWV = { ¢ Ornr ] , where

Om—r,r Om—r,n—r
C € R,,. It is clear that det C' = ¢ # 0. In what follows C* =.Adj C means the classical adjoint
matrix of the matrix C, i.e. C*C' = c¢l,. Based on the above, we ebtain the following theorem.

(1). Theoretically speaking, the solution X, = W~* [ Yo ] of equation (1) can be written as

Theorem 2. The matriz equation AX = B is solvable over a Bezout domain R if and only if

UB = 0 D , where D € R, i, and C*D = c(G, where G &R, ;.
m—r,k

If the equation AX = B s solvable, then fortarbitrary matriz () € R,,_, the matrizv Xg =
Ut {g} 15 a general solution of equation AX = B.

From Theorem 2 we obtain the following comment. Let A, B € R,,, ,, be nonzero matrices and
let rank A < n. Suppose the matrix equationyAX = Bs solvable and Xy € R,,,, is its general
solution. Then AX = B hasssolutions )N(l- CRapy o= 1,2,..., such that Xy = )N(iTi, where
T, € Ry

Presented results above@an be extended to linear nonhomogeneous equations over commutative
rings of a more gencral ‘algebraicmature.
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