Том 13 № 2

Постійне посилання зібрання

Переглянути

Нові надходження

Зараз показуємо 1 - 4 з 4
  • Документ
    Topology of optimal flows with collective dynamics on closed orientable surfaces
    (2020) Alexandr Olegovich Prishlyak, Mariya Viktorovna Loseva
    We consider flows on a closed surface with one or more heteroclinic cycles that divide the surface into two regions. One of the region has gradient dynamics, like Morse fields. The other region has Hamiltonian dynamics generated by the field of the skew gradient of the simple Morse function. We construct the complete topological invariant of the flow using the Reeb and Oshemkov-Shark graphs and study its properties. We describe all possible structures of optimal flows with collective dynamics on oriented surfaces of genus no more than 2, both for flows containing a center and for flows without it.
  • Документ
    Задачі зв’язності для узагальнених гіпергеометричних многочленів Аппеля
    (2020) Nataliia Luno
    В статті використано загальний підхід до розв’язування задач зв’язності для многочленів Аппеля, який базується на тому, що відношення трансферних функцій, які представляють собою формальні степеневі ряди, даних двох сімейств многочленів Аппеля є відомим рядом. Використовуючи рекурентні формули для знаходження коефіцієнтів ряду, який є відношенням двох даних формальних степеневих рядів, ми отримали розв’язок оберненої задачі для узагальнених гіпергеометричних многочленів Аппеля.  В загальному випадку розв’язок визначається рекурентними формулами, але у деяких часткових випадках, коли породжуюча функція має простий вигляд, розв’язок оберненої задачі виражається у замкнутій формі, зокрема, для многочленів Гоулда-Хоппера, або для узагальнених гіпергеометричних многочленів Аппеля, породжуюча функція яких співпадає із функцією Бесселя першого роду. Користуючись цим же методом і відомим представленням узагальнених гіпергеометричних многочленів Аппеля у формі звичайного диференціального оператора, ми знайшли рекурентні формули розв'язку задачі зв'язності між узагальненими гіпергеометричними многочленами Аппеля та многочленами Бернуллі, між узагальненими гіпергеометричними многочленами Аппеля - многочленами Гоулд-Хоппера та між двома різними сімействами узагальнених гіпергеометричних многочленів Аппеля. Використовуючи схожий підхід, ми отримали нове рекурентне рівняння для  узагальнених гіпергеометричних многочленів Аппеля, коефіцієнти якого визначаються рекурентно, і встановили замкнуту форму декількох перших з них. Частковими випадками отриманого рівняння є, зокрема, відомі рекурентні рівняння для многочленів Гоулда-Хоппера і для многочленів Ерміта. Крім того, розв'язок задачі зв'язності для двох різних сімейств узагальнених гіпергеометричних многочленів Аппеля отримано в іншій формі - з використанням значень цих многочленів в нулі.
  • Документ
    Laplacian, on the Arrowhead Curve
    (2020) Claire David
    In terms of analysis on fractals, the Sierpinski gasket stands out as one of the most studied example. The underlying aim of those studies is to determine a differential operator equivalent to the classic Laplacian. The classically adopted approach is a bidimensional one, through a sequence of so-called prefractals, i.e. a sequence of graphs that converges towards the considered domain. The Laplacian is obtained through a weak formulation, by means of Dirichlet forms, built by induction on the prefractals. It turns out that the gasket is also the image of a Peano curve, the so-called Arrowhead one, obtained by means of similarities from a starting point which is the unit line. This raises a question that appears of interest. Dirichlet forms solely depend on the topology of the domain, and not of its geometry. Which means that, if one aims at building a Laplacian on a fractal domain as the aforementioned curve, the topology of which is the same as, for instance, a line segment, one has to find a way of taking account its specific geometry. Another difference due to the geometry, is encountered may one want to build a specific measure. For memory, the sub-cells of the Kigami and Strichartz approach are triangular and closed: the similarities at stake in the building of the Curve called for semi-closed trapezoids. As far as we know, and until now, such an approach is not a common one, and does not appear in such a context. It intererestingly happens that the measure we choose corresponds, in a sense, to the natural counting measure on the curve. Also, it is in perfect accordance with the one used in the Kigami and Strichartz approach. In doing so, we make the comparison -- and the link -- between three different approaches, that enable one to obtain the Laplacian on the arrowhead curve: the natural method; the Kigami and Strichartz approach, using decimation; the Mosco approach.    
  • Документ
    Smooth approximations and their applications to homotopy types
    (2020) Олександра Олександрівна Хохлюк, Sergiy Ivanovych Maksymenko
    Let $M, N$ the be smooth manifolds, $mathcal{C}^{r}(M,N)$ the space of ${C}^{r}$ maps endowed with the corresponding weak Whitney topology, and $mathcal{B} subset mathcal{C}^{r}(M,N)$ an open subset.It is proved that for $0<r<sleqinfty$ the inclusion $mathcal{B} cap mathcal{C}^{s}(M,N) subset mathcal{B}$ is a weak homotopy equivalence.It is also established a parametrized variant of such a result.In particular, it is shown that for a compact manifold $M$, the inclusion of the space of $mathcal{C}^{s}$ isotopies $eta:[0,1]times M to M$ fixed near ${0,1}times M$ into the space of loops $Omega(mathcal{D}^{r}(M), mathrm{id}_{M})$ of the group of $mathcal{C}^{r}$ diffeomorphisms of $M$ at $mathrm{id}_{M}$ is a weak homotopy equivalence.