Ministry of Education and Science of Ukraine
Black Sea Universities Network

ODESA NATIONAL
UNIVERSITY OF TECHNOLOGY

International Oompeﬂﬂon of
S’fudem‘ Sclen’rlflc Works.,,

scn ENCE 30228
PKOO -PINGS

"0 g4 S}IIOMQ‘_W S

OPESA, ONUT 2022

Ministry of Education and Science of Ukraine
Black Sea Universities Network

Odesa National University of Technology

International Competition of Student Scientific Works

BLACK m@%ozz

Odesa, ONUT 2022

UDC 001.8(063)

Editorial board:

Prof. B. Iegorov, D.Sc., Professor, Rector of the Odesa National University of
Technology, Editor-in-chief

Prof. M. Mardar, D.Sc., Professor, Vice-Rector for Scientific and Pedagogical
Work and International Relations, Editor-in-chief

Dr. 1. Solonytska, Ph.D., Associate Professor, Director ef the M.V. Lemonosov
Technological Institute of Food Industry, Head of the jury of .«Food Science and
Technologies»

Dr. Yu. Melnyk, D.Sc., Associate Professor, Director of the G.E. Weinstein
Institute of Applied Economics and Management, Head ofthe jury of «Economics and
Administrationy

Dr. S. Kotlyk, Ph.D., Associate Professor, \Director of the P.M. Platonov
Educational-Scientific Institute of Computer Systemssand Technologies “Industry
4.0”, Head of the jury of «Information Technologies, Automation and Robotics»

Prof. O. Titlov, D.Sc., Professor, Head of the Department of Oil and Gas
Technologies, Engineering and Heat Power Engineering, Head of the jury of «Power
Engineering and Energy Efficiency»

Prof. G. Krusiry D.Sc., Professor, Head of the Department of Ecology and
Environmental Protection, Technologies, Head of the jury of «Ecology and
Environmental Protection»

Dr. V. Kozhevnikova, Ph.D., Associate Professor, of the Department of Hotel
and Catering/Business, Technical Editor

Black Sea Science 2022: Proceedings of the International Competition of
Student Scientifiec Works / Odesa National University of Technology; B. legorov, M.
Mardar (editors-in-chief) [ef al.]. — Odesa: ONUT, 2022. — 749 p.

Proceedings of International Competition of Student Scientific Works «Black Sea Science
2022» contain the works of winners of the competition.
The author of the work is responsible for the accuracy of the information.

Odesa National University of Technology, 2022.

Organizing committee:

Prof. Bogdan legorov, D.Sc., Rector of Odesa National University of
Technology, Head of the Committee

Prof. Maryna Mardar, D.Sc., Vice-Rector for Scientific and Pedagogical Work
and International Relations of Odesa National University of Technology, Deputy Head
of the Committee

Prof. Baurzhan Nurakhmetov, D.Sc., First Vice-Rector of Almaty
Technological University (Kazakhstan)

Prof. Michael Zinigrad, D.Sc., Rector of Ariel University (Israel)

Prof. Plamen Kangalov, Ph.D., Vice-Rector for AcademicfAffairs of “Angel
Kanchev” University of Ruse (Bulgaria)

Prof. Heinz Leuenberger, Ph.D., Professor of the Institute of Ecopreneurship
of University of Applied Sciences and Arts (Switzerland)

Prof. Edward Pospiech, Dr. habil., Professor of the Institute of Meat
Technology of Poznan University of Life Sciences (Poland)

Prof. Lali Elanidze, Ph.D., Professor of the Faculty of Agrarian Sciences of
Iakob Gogebashvili Telavi State University (Georgia)

Dr. Dan-Marius Voicilas, Ph.D., Associate’ Professor of the Institute of
Agrarian Economics of Romanian Academy.(Romania)

Prof. Stefan Dragoev, D.Sc., Vice-Rector for Seientific Work and Business
Partnerships of University of Food Technologies (Bulgaria)

Prof. Jacek Wrobel, Dr. habil.,, Rector of West Pomeranian University of
Technology (Poland)

Dr. Mei Lehe, PhiD: Vice-President of Ningbo Institute of Technology,
Zhejiang University (China)

Dr. V. Kozheynikeva, Ph.D.; Associate Professor of the Department of Hotel and
Catering Business’of *Odesa,National University of Technology, Secretary of the
Committee

INTRODUCTION

International Competition of Student Scientific Works “Black Sea Science” has
been held annually since 2018 at the initiative of Odesa National University of
Technology (formerly Odesa National Academy of Food Technologies) with the
support of the Ministry of Education and Science of Ukraine. It has been supported by
Black Sea Universities Network (the Association of 110 higher education institutions
from 12 countries of the Black Sea Region) since 2019, and by Iseki-FOOD
Association (European Integrating Food Science and Engineering Knowledge into the
Food Chain Association) since 2020.

The goal of the competition is to expand international relations and attract
students to research activities. It is held in the following fields:

. Food science and technologies

. Economics and administration

. Information technologies, automation and rebotics
. Power engineering and energy efficiency

. Ecology and environmental protection

The jury includes both Ukrainian and foteign scientists. In the 4 years that the
competition has been held, the jury included scientists frem universities of 24
countries: Angola, Azerbaijan, Benin, Bulgaria, China, €zech Republic, France,
Georgia, Germany, Greece, Israel, Italy, Kazakhstan, lzatvia, Lithuania, Moldova,
Pakistan, Poland, Romania, Serbia, Slovakia, Switzerland, Turkey, USA.

At the same time, every year the geography has expanded and the number of
foreign jury members has increased: from46 jury members representing 25 universities
from 12 countries in 2018,£0'73 jury members of the 46 universities from 19 countries
in 2022.

More than a thousandsstudent research papers have been submitted to the
competition from both Ukrainian and foreign institutions from 25 countries: China,
Poland, Mexico, USA, France, Greece, Germany, Canada, Costa Rica, Brazil, India,
Pakistan, Israel, Macedonia, Lithuania, Latvia, Slovakia, Romania, Kyrgyzstan,
Kazakhstan, Bulgaria, Moldova, Georgia, Turkey, Serbia.

The'interest of foreign students in the competition grew every year. In 2018, the
students representing 15 institutions from 7 countries have submitted 33 works. In 2021
the mumber of submitted works increased to 73, authored by the students of 40
institutions from 18 countries.

The competition is held in two stages. In the first stage, student research papers
are reviewed by members of the jury who are experts in the relevant fields. In the
second stage of the competition, the winners of the first stage have the opportunity to
present their work to a wide audience in person or online.

All participants of the competition and their scientific supervisors are awarded
appropriate certificates, and the scientific works of the winners are included in the
electronic proceedings of the competition. Every year the competition receives a large
number of positive responses from Ukrainian and foreign colleagues with the desire to
participate in the coming years.

3. INFORMAEION
TECHNOLOGIES,
AUTOMATION AND
ROBOTICS

334

INFORMATION TECHNOLOGIES, AUTOMATION AND ROBOTICS

A COMPILER OF DOMAIN-SPECIFIC LANGUAGE FOR "SMART-
HOME" APPLICATIONS: DESIGN PRINCIPLES AND
IMPLEMENTATION ISSUES

Author: Oleksandr Nelipa
Advisor: Mykola Tkachuk
V. N. Karazin Kharkiv National University (Ukraine)

Abstract. The actuality to use of a domain-specific language (DSL) concept in
such complex problem areas as the Internet of Things systems and “Smart-Home
applications (SHA)” is motivated. The overview of the main methods and software
tools for DSL design and implementation is done, and one possible scheme for their
classifications is proposed. The approach to DSL compiler”designing for SHA is
proposed which is based on a configurable grammar rules system. All main functional
blocks for the proposed DSL compiler are developed using such programming tools as
Python and C++, and the first testing results of this implementation are obtained and
analyzed. The effectiveness assessment for this compiler prototype is provided in the
way to calculate of two quantitative metrics, and this, one allowed to get the
approximated weighted efficiency value of ‘the compiler’s usage about 16.75%. It
shows the acceptable quality of the elaborated DSL compiler’s prototype, allows to
make the positive conclusions about the proposed approach, and to formulate some
further work to be done in this research.

Keywords: compiler, domain-specific language, loT, smart-home, design,
software, effectiveness, metric

L. INTRODUCTION

An efficient software development in such modern and high-tech application
domains as the Intemet of Things (IoT) system, and especially, for ‘Smart-Home’
applications (SHA) [1-2], suppeses the usage of such new sophisticated and advanced
design methods as'a domain-driven development, a model-driven architecting, and
some knowledge-based software tools and technologies [3].

SHA systems have,some specific features and options which influence the
approepriate preblems for their design and implementation [2], see the Figure 1.

SENSORS ~ \\ /[\]\ ;
{ H Intern \
womiay 1 [LAN f aeiowic B (B4 USERS
i ————t—

Control i | Manager |
H =
- \ 7 Py -
\\ g H \ /
—_— —— t \ oRABAs: /
Door Lock Smart Home Server N =,

amm PROCESORS i — ——r |

APis and i SMART i
ACTUATORS : PHONE | |
QWADAZ i

Fig. 1 — A reference conceptual architecture of IoT / SHA [2]

428

INFORMATION TECHNOLOGIES, AUTOMATION AND ROBOTICS

Some SHS specific features are:

- includes a lot of interconnected hardware and software components;
- any such a component has a lot of specific features and parameters;
- all components operate in real-time mode;

- operation environment is dynamic and changeable.

According to these issues the following main challenge for SHA-developers are
facing with: how to design and to implement configurable and adaptable complex
software and hardware solutions, taking into account different user’s needs and
requirements?

One of the recognized ways to achieve this aim is the usage of concepts and
technologies of domain-specific languages (DSL) [4], which have to bewetreated for a
given application area, that finally allows to provide more effective and cheaper
programming techniques in system development. One very important reasen to use
DSL is an opportunity to support variability and adaptivity ofiappropriate software
solutions due to the elaboration of flexible grammar rules and building of correct
domain dictionary (or a set of tokens).

The purpose of this study is to analyze/some eXisting models, tools, design
principles for DSL construction, to propose-an approach to ereate DSL compiler for
adaptive software development in SH applications, to provide compiler components
prototyping and testing, and to get fifst results of effectiveness estimation for the
proposed approach in the subject area ‘Smart-Home’ application.

I1I. MAIN DESIGN PRINCIPLES FOR SHA / DSL

2.1. Basic design approaches for DSL

There are 2 main types of domain-specific languages: external DSL and internal
DSL (or also known“as embedded DSL) [3]. External DSLs have their own syntax,
which is, in most cases, separated from the application programming language. On the
other hand, all'internal DSLs use some general purpose language (GPL), but in fact, they
just expend a‘specific subset of the functionalities of this language. One of the most
important problems in theereation and future use of DSL is the availability of special
language wotkbench (tools). These tools can be known as the specialized integrated
develepment environments (IDEs) for defining, designing and creating DSL for specific
needs.

The process of creating external DSLs consist of three key steps:

1. Definition of the semantic model;
2. Definition of the syntactic mode (abstract and concrete syntax);
3. Definition of rules of transformation (in other words, how abstract is

translated to actual).

To determine the specific syntax of the language and to create the specific
transformation rules by building a language translator there are some ready-made tools,
which can be helpful. For example, ANTLR [5] allows generating lexical and syntax
parser, language translator. To determine the semantic model of language, which
describes a particular aspect of the system there are no special tools. To do so, every

429

INFORMATION TECHNOLOGIES, AUTOMATION AND ROBOTICS

DSL developer must independently describe the metamodel of the language by using
GPL or, maybe, other DSL.

When creating an internal DSL, the most straightforward way is to select one of
the GPL as a base (e.g. Java, Kotlin, C# etc.) and create a special library, based on the
grammar of the chosen language. This custom library then could be used in a certain
style, usually to manage particular aspects of the software system that is being developed
[5]. Unlike external DSL, using the grammar of the selected language could lead to some
obvious constraints. Thus, the less flexible the constructions of base language are, the
less usable and effective the internal DSL is going to be. It means, when ehoosing the
language, the capabilities of one have to correspond to the scope and use of the internal
DSL which will be created on its basis. Last, but not least, with all of the functionality
of the selected language as a base, the developer receives a”ready=made set of
development support tools, such as modern IDEs, plugins, documentation and so on. So,
the developer loses complete freedom of definition of the grammar, remaining within
the grammar of the base language, but at the same time gets the:opportunity to use all
the already available benefits of this language.

Another approach to creating internal DSL is'the use of programming languages
with configured syntax, i.e., languages focused on metaprogramming techniques. This
approach is called "Extensible programming";Which isa programming style focused on
the use of mechanisms for expanding programming languages, translators, and execution
environments [6]. The examples of these languages .could be the follows: Forth,
Common Lisp, Nemerle, and Racket.

As the syntax of all GPL is based on a text grammar, such grammars have one
essential disadvantage: when it comes to expanding, it could become ambiguous [6]. In
other words, there may be assituation whennthe same lines of source code will have
several interpretations, and it’s really unknown, which one it is meant to be. This
problem is especially ¥isible when the developer is trying to combine several different
grammar extensiom$“into onie language. Of course, separately they are absolutely
unambiguous, but when combined together, it may lead to serious problems and further
use of the langtiage will be impossible. The refusal to use text grammar may be a possible
solution. In this case, the program could be considered as an instance of the active
syntacti¢c metamodel. Usually, the metamodel of programs is presented in the form of an
abstract syntactic tree. The examples of these ones could be follows: Scheme, Clojure,
etc.

2.2 Seftware tools for DSL development

All language support tools, in fact, are the tools that not only help to create DSL,
but also provide its elaboration as modern intelligent development environments,
providing opportunities to build modern IDEs for the created languages. Such DSL
development environments will be able to provide some essential capabilities, without
which modern software development is impossible:

. Code auto-completion;
. Default automatic code generation;
. Tools for easy and flexible refactoring;

. Debugging of DSL scripts or scenarios;

430

INFORMATION TECHNOLOGIES, AUTOMATION AND ROBOTICS

. Integration with version control tools (git, cvs, svn);

. Unit and integration testing.

There are some frameworks for already existing popular editors, e.g., IntelliJ
IDEA, however, it can’t provide an appropriate level of support and integration with
DSL. So, one of the most suitable solutions for this problem may be use of JetBrains
MPS [7]. This is a metaprogramming system that implements a paradigm of language-
oriented programming. It can be both an environment for language development and at
the same time IDE for the developed languages.

In order to maintain the compatibility of language extensions with'each other,
MPS deal with the programs not as text, but as a syntax tree. This allows editing to take
place directly. As a result, instead of specific language syntax, the MPS defines an
abstract syntax (syntax tree structure) for the DSL, which is currently developed. MPS
offers a special projection editor to work with the trees. It means for each node of the
syntax tree, IDE creates the part of the screen, with which user.can interact.

Summarizing the overview results given below dt is possible to propose the
classification scheme of the methods and tools for design and suppert.of DSL compilers
which are shown in Figure 2:

_‘ | Ay

roemial GEL e IrzeriabSEs

Gerarating trarz@borg Family of LISP: Based o general
purpose langusge
- Comman Lisp.
lest syace,
p 4 Scheme, Clojura Rubyy, Pythan, java, Gk, G+
Fude: i leguage Dased un language e od @nyironmment
s wilh-custanmized granmriai
As & PR fo exIsting retBralns MPS {exlenaitle pragran ming)
IDE 45
Eclipse IDE, — — 1 Farth, Factor, Z-:.Ial:ket. N_l:rnE-'Ie.
Intelli] IDEA : Elglon, Helvatiz, xText
. ' rmEsapragrariming

Visual Studic

Fig.2=The proposed classification of methods and tools for creation and support of
DSL

III. IMPLEMENTAION OF THE PROPOSED DSL COMPILER FOR
ADAPTIVE SHA DEVELOPMENT
Taking into account this elaborated classification scheme we decided to
elaborate the target DSL compiler for adaptive SHA development as an internal DSL
with textual grammar using GPL Python and C++.

3.1 Grammar rules for the DSL
Any programming language (GPL or DSL) is a subset of the real (natural)

431

INFORMATION TECHNOLOGIES, AUTOMATION AND ROBOTICS

language and is created to facilitate and support the process of human communication
with the computer. The compilation theory is built on the fact that any language can be
described formally. Formally means that such a language consists of a set of finite
words and their grammatical constructions. The syntax of a programming language, or
an appropriate grammar is a collection of structure-corrected and pre-determined
combinations of characters, which can be simply called as rules. The syntax of
programming languages is usually defined with using of a combination of some regular
expressions for its lexical structure and the Backus — Naur notation [8§].

So, to define the syntax of DSL grammar rules for SHA, it is necessary to apply
some special notation symbols, namely:

. {} — zero or more than zero,

. [] — zero or one,

. + — one or more than one from the left part,
. () — for grouping purpose.

. | — logical OR.

Some predefined words in the grammar rules 'can be whether'links for other
grammar rules or appropriate tokens [14].

Further, it is important to define the main grammar rule, without which there is
no further grammar development possible. So, in this example, it will be dome as
follows:

program i {statement} (D)

The expression (1) means, that there 1s a grammar rule with the name “program”,
which consists of zero«r more than zero “statements”. In this case, a “statement” is
another grammar rule, and it/can be structured as the following set of the basic rules
(see the expressions (2)-(6) respectively):

statement :: “DESPLAY” (expression | string | array | object) nl (2)
| “IF”comparison “THEN” nl {statement} “ENDIF” nl 3)
| "DECLCARE" ident "=" expression nl (4)
["INPUT" ident nl (5)
| ident "=" expression nl (6)

where “DISPLAY”, “IF”, “THEN”, “ENDIF”, “DECLARE”, “INPUT” are the
appropriate keywords of the proposed DSL grammar rules with respect to typical

9 <¢ b N1

process control algorithms used in SH applications; “string|”, “array”, “object”, “ident”
are some variables of the different data types; “nl”, “expression”, “comparison” are
other grammar rules, see below the definitions (7)-(12).

Other defined DSL grammar rules look like as follows:

432

INFORMATION TECHNOLOGIES, AUTOMATION AND ROBOTICS

nl ::="\n'"+ (7)

cpmparison = expression (("==" | "I=" | ">" | ">="] "<" | "<="))
expression)+

expression ::=term {("-"|"+") term} 9)

term ::=unary {("/"|"*") unary} (10)

unary ::=["+" | "-"] primary (11)

primary ::= number | ident (12)

As it may be seen from the set of DSL grammar rules given.in (1) - (12), a tree-
like grammar structure will be generated using these ones sequentially. It provides an
ability to construct the DSL expressions correctly, and the main implementation issues
for the DSL compiler for these grammar rules are presented in the next subsection.

3.2 Software implementation of the main compiler’ blocks
The first module of the compiler, which is'the lexical analyzer (Lexer), will produce
a stream of tokens. To do so, first what needs to be done, to implement the ability to track
the current position in the input DSL textand character, which corresponds to this position.
It will allow the compiler to analyze every symbaol or set of symbols separately and find
out which token it is. Of course, it is also needed to move the current position further and
update the symbol on this position accordingly. In some cases (it will be explained later),
it will be needed to know themext symbol witheutupdating the current position. The code
examples of these functions are shown in Figure 3:
def nextChar{self):
self.curPos &/, 1
if self.cupPos >= lenfself.source):
self gfuBChar = '\ ¥

else:
self.curChas = self.source[self.curFPos]

def peek(self) :
if self.curPos + 71 >= len(self.source):
return)'
return self.sourcel[self.curPos + 1]

def aboBf¥self, message):
s5ys.eX¥PL ("Lexing error. " + message)

def skipComment (self):
if self.curChar = "#':
while self.curChar !'= "\n':
self .nextChar(})

def skipWhitespace{self):
while self.curChar = ' ' or self.curChar = "\t' or self.curChar = "\r':
self.nextChar{)

Fig. 3 — Python code fragment for lexical analysis

433

INFORMATION TECHNOLOGIES, AUTOMATION AND ROBOTICS

One of the main steps in creating a lexical analyzer is defining tokens, which
will be allowed in the proposed compiler. A list of available tokens for adaptive SHA
was received from the FODA model description (see in Figure 3). However, there are
some tokens given by default:

* Operator — one or two characters: + - * / = |=>>= < <=

 String — quotation marks followed by zero or more characters;

* Number — one or more numeric characters followed by optional decimal part;

* Identifier — alphabetic character followed by zero or more alphanumeric
characters;

» Keyword — some set of characters reserved by programming language.

There is a possibility of lexical errors in input DSL code, so it’s needed to define
a mechanism of handling such situations. So, in case if the lexical amalyzer can’t
determine which token the current character is, it will prematurely complete the
compilation process and notify the user about the lexical error. It is also impertant to
skip all comments and non-used whitespaces, which may be present in the input text.

For example, for a mathematical operator recognition, it may be enough to
analyze the current character and, if it is matched, the'token is successfully identified.
However, this approach can’t recognize operators, which eensist of 2 symbols, such as
I=, >=, <=. So, for this type of operators, if the current operater.could be 2-symboled,
it’s needed to check the following symbol (see in Figure 2).

The second module of the compiler is a Parser, which is directly connected with
language grammar, so, the main goal is to implement language rules in the programming
language. It means, that each rule in the formal grammar must have an appropriate
handler in the parser. The input of the Parser is a stream of tokens, which were generated
in the previous step. As wellias in Lexer for symbols, for the Parser to work properly it
is needed to track the current token and move to the next one after processing it. So,
basically, the programwill iterate on the token list and call the appropriate handler on

each token match. The.code examples of these handlers are shown in Figure 4:

def nl {self):
self . matgh (TokenType . NEWLINE)
while s€lf.checkToken (TokenType.NEWLINE) :
selfinextToken ()

def expreg§8ion (self) :
self.term()
while s€E¥EAcheckToken (TokenType.PLUS) oxr self.checkToken (TokenType MINUS) :
: self.emitter.emit(self.curToken.text)
self.nextToken()
Sclf.tefm()

def term(sSelT) :
self . unary()
while self.checkToken(TokenType.ASTERISK) cor self.checkToken(TokenType.SLASH) :
self.emitter.emit(self.curToken.text)
self . nextToken ()
self . unary()

def unary{self):
if self.checkToken{TokenType.PLUS) or self.checkToken (TokenTvpe.MINUS) :
self.emitter.emit(self.curToken.text)
self.nextToken ()
self .primary()

Fig. 4 — Python code fragment for parser's handler of the rules (7-11)

434

INFORMATION TECHNOLOGIES, AUTOMATION AND ROBOTICS

It is important to understand that to achieve different levels of priority it is
needed to consistently organize grammatical rules. In other words, operators with
higher priority must be lower in grammar in order for them to be lower in the parsing
tree, which is the output of the parser. Thus, operators, which are the closest to the
tokens in the parsing tree (i.e. closest to tree leaves) will have the highest priority. Since
binary operators “+” and “-* are lower in grammar rules, they will have higher priority
than * and /. For a better understanding of this concept, let’s consider simple math
examples, which are 1 +2*3 and 4 / -5. The generated parsing trees for these examples
are shown in Figure 5:

1+2%3 4/-5
BXprEssian ERpression
T e
—_
et | s |
term - term term
|] e AT
unary unary y unary unagl ./ unary
prireary primary primary prmary - primary
number number number pumber number

B | | |

4

Fig. 5 — Generated parsing trees for some simpleé math expression examples

It means, that the multiplication operator will always be lower in the tree than
the plus operator. The single negation operator () will'be even lower. If there is more
operators with the same priority, then they will be processed from left to right.

The last module of the compiler is a,Codeemitter. It will iterate along a parsing
tree and for each handler function generate the corresponding C++ code. The
generation of machine-eéxecutable.code can be achieved by using any standard C ++
compiler. The usage of sueh an approach does not require to provide a code
optimization by the created DSL compiler, as, in fact, this will be handled by the
compiler of the'source programming language. The code examples of generating target
code are shown in Figure 6:

def programfself) :

E self.emitter.headerlLine("#include <stdioc.h>")
self.emitter.headerLine("#include <iostream>")
Belf .cmitter.headerLine ("#include <string>")
gelf.emitter.headerlLine {"using namespace std;™)
self.emitter.emitLine("int main (void) ["}

while self.checkToken(TokenType . NEWLINE) :
self.nextToken ()

while not self.checkToken(TokenType.EOF) :
self.statement ()

self.emitter.emitLine("return 0;")
self.emitter.emitLine ("} ")

Fig. 6 — Python code fragment of generating target C++ code

435

INFORMATION TECHNOLOGIES, AUTOMATION AND ROBOTICS

In Figure 6 proposed compiler emits base C++ file structure and some additional
required libraries.

IV. RESULTS OF WORK IN A FORM OF PROPOSED
QUANTITATIVE METRICS
To prove an effectiveness of the elaborated compiler for SHA development, it is
needed to choose the specific quality metrics of software development. In this case, it
was chosen the method of estimating the number of lines of code (LOC). Thus, one of
the possible metrics of efficiency of the DSL compiler Kef (1) can be calculated by the

formula:

LOC¢py,

Kef(1) = x100%, (13)

where LOCpg; — the number of DSL lines of code; LOC;p; — the number of
generated GPL lines of code.

For the described specific use case, this valuedby formula'(13) is calculated as
13/39*100% = 33%.

Another way to evaluate the quality of the created eompiler is to compare the
amount of C++ code generated by DSL compiler, with the ameunt of C++ code that
was created manually, for the same example. of air conditioner controller. This example
was found in the public code repository on the GitHub service [9].

Therefore, the second possible metric of the efficiency of the DSL compiler Kef
(2) can be calculated by the formula:

LOC(E.+ +)¢p, —LOC(C + +
Kef(2) = (- O)g’ELC D (Jost 100%, (14)
GPL

where LOC(C + +)psp— is the number of LOC generated by DSL compiler;
LOC(C + +)4pp —is the numberef LOC in the C++ program written in a manual mode.
For the described specific test case, this value calculated by the formula (14) is equal:
(25-23)/25*100% = 8%:

It is toumention that the Kef (1) determines the advantage of the use of the DSL
compiler from the point of view on cost reduction for the implementation of the
resouree management system of SHA. The Kef (2) determines the advantage of the use
of the DSL compiler from the maintenance, support, and refactoring code point of view
in the target SHA system.

In order to calculate the estimated weighted average efficiency score of the
developed DSL compiler, it’s needed to choose some so-called software development
and maintenance importance factors. Let’s consider them, e.g. as 0.35 for the Kef (1),
and as 0.65 for the Kef (2) (in more correct way it can be done using one of the expert
estimation methods, e.g, the Analytic Hierarchy Process [10]). Therefore, the final
average value of the estimation metric K_avg can be calculated with the following
formula:

436

INFORMATION TECHNOLOGIES, AUTOMATION AND ROBOTICS

Kavg = (0.35 % Kef (1) + 0.65 * Kef (2)) * 100% = 16.75% (15)

where Kef(1) and Kef(2) are the values of the compiler efficiency metrics
calculated using the formulas (13) and (14) accordingly.

So, as a final result, the approximated weighted average efficiency score of the
developed DSL compiler is equal to 16.75% that corresponds with some data about
these issues already published (see, e.g. in [11]).

The additional ideas and more specific issues of this research can be found in
[12].

V. CONCLUSIONS

In this paper we have motivated an actuality to apply.a,concept of domain-
specific language (DSL) in such modern and complex problem domains as Internet of
Things (IoT) systems and “Smart-Home” applications. The performed overview of the
main methods and software tools for DSL design and implementation allowed us to
elaborate their possible classification scheme and choice the appropriate way for our
DSL development. The main functional blocks. for the proposed DSL compiler are
designed and implemented using Python and C++, and the effectiveness estimation for
this compiler is done with calculation of two quantitative metrics that allowed to get
the approximated weighted average about16:75%. These results show the acceptable
quality of the elaborated DSL compiler, and it allows to make the positive conclusions
about the proposed approach.

Further work in this research 18 supposed to expand the grammar of the DSL
compiler with special rules, that will support effectively the variability of software
components in “Smart-Home™ systems, and to develop a comprehensive methodology
for a performance evaluating of.a,prospective DSL compiler, taking into account the
possible costs of its eonstruetion and usability for its end users.

VI. REFERENCES

1. D. Pandit, S. Pattanaik, “Software Engineering Oriented Approach to lot - Applications: Need
of the Day?, in InternationallJournal of Recent Technology and Engineering (IJRTE), Vol.7, Issue-6,
2019 - pp. 886-895.2.

2. M. Mazzara, 1. Afanasyev, S. R. Sarangi, S. Distefano, V. Kumar and M. Ahmad, "A
Reference Architecture , for Smart and Software-Defined Buildings," 2019 IEEE International
Conference on Smart Computing (SMARTCOMP), Washington, DC, USA, 2019, pp. 167-172, doi:
10.1109/smartcomp.2019.00048.

3. D. Karagiannis, H.C. Mayr, J. Mylopoulos, Domain-Specific Conceptual Modeling:
Concepts, Methods and Tools. Springer, Berlin (2016).

4. R. Huber, L. Pueschel, M. Roeglinger, “Capturing smart service systems: Development of a
domain-specific modelling language”, in Inf. Systems Journal, Vol. 29, Issue 6 November 2019, pp.
1207-1255.

5. T. Parr, ANTLR, ANother Tool for Language Recognition. URL: http://www.antlr.org.

6. M. Voelter, S. Benz, C. Dietrich, MDSL Engineering: Designing, Implementing and Using
Domain-Specific Languages, 2013.

7. JetBrains MPS, MetaProgramming System. URL: https://www.jetbrains.com/mps/

8. R. Wilhelm, H. Seidl, S. Hack, Compiler Design: Syntactic and Semantic Analysis. Springer-
Verlag Berlin Heidelberg, 2014. doi: 10.1007/978-3-642-17540-4.

437

INFORMATION TECHNOLOGIES, AUTOMATION AND ROBOTICS

9. Xavier, Air_conditioning_control, 2015. URL:
https://github.com/jeffersonxavier/air_conditioning_control

10. I.B. Botchway, A. E. Akinwonmi, S. Nunoo, Evaluating Software Quality Attributes Using
Analytic Hierarchy Process (AHP), Journal of Advanced Computer Science and Applications, Vol.
12, No. 3 (2021) 165-173. doi: 10.14569/IJACSA.2021.0120321.

11. A. Barisi¢, V. Amaral, M. Gouldo, Quality in Use of Domain Specific Languages: A Case
Study // Proceedings of the 3rd ACM SIGPLAN Workshop on Evaluation and Usability of
Programming Languages and Tools (PLATEAU '11), USA, Oregon, October 2011. — pp. 65-72.

12. Rustam Gamzayev, Mykola Tkachuk, Oleksandr Nelipa. Domain-Specific Language for
Adaptive Development of "Smart-Home" Applications // Proceedings of the 1stsInternational
Workshop on Information Technologies: Theoretical and Applied Problems 2021 (ITTAP-2021)
Ternopil, Ukraine, November 16-18, 2021. (http://ceur-ws.org/Vol-3039/) — pp. 154-165.

438

USE OF WEB-TECHNOLOGIES IN THE PROBLEM OF DIGITALIZATION OF
THE DORMITORY

Authors: Daria Liakhovska, Diana Kochuk

Advisor: Tetyana Astistova

Kiev National University of Technologies and Design (Ukraine)......................... 371

IMPROVING THE LEVEL OF DETAILING IN THE FORMATION OF
REALISTIC THREE-DIMENSIONAL SCENES

Author: Max Zakharchyk

Advisor: Romanyuk Oksana

Vinnytsia National Technical University (Ukraine)...............ccooodtiiiii it 383

A REAL-WORLD CASE STUDY OF A VEHICLE ROUTING.PROBLEM

Authors: Arnas Matusevicius, Karolis Lasas

Advisor: Tomas Krilavicius

Vytautas Magnus University (Lithuania)...............o il oo, 399

DECISION SUPPORT SYSTEM FOR FORECASTING THE NUMBERS OF THE
TROOP IN THE MIDDLE AGES

Author: Andrei Kapeleshchuk

Advisor: Oleksandr Melnykov

Donbas State Engineering Academy (Ukraine)..o......0omf i, 408

DEVELOPMENT OF SOFTWARE FOR AUTOMATION OF KNOWLEDGE
TESTING

Author: Maksym Kiyashko

Advisor: Kateryna Kirei

Petro Mohyla Black Sea National University (Ukraine)...............coooeeviiiiiinn., 416

A COMPILER/OF DOMAIN-SPECIFIC LANGUAGE FOR "SMART-HOME"
APPLICATIONS: DESIGN PRINCIPLES AND IMPLEMENTATION ISSUES
Author: Oleksandr Nelipa

Advisor: Mykola Tkachuk

V. Nt Karazin Kharkiv National University (UKraine)............c.ccovvvviiiiiiinnnannns 428

DEVELOPMENT OF SOFTWARE MODULE FOR ANALYSIS OF IT
SPECIALISTS’ LABOR MARKET

Author: Anhelina Dub

Advisor: Anna Zhurba

Ukrainian State University of Science and Technologies (Ukraine)...................... 439

CONTROL SYSTEM OF CONDENSING DRYING PROCESS WITH ENERGY
RECOVERY USING HEAT PUMP

Author: Denis Chaplygin

Advisor: Dmytro Kovalchuk

Odessa National Academy of Food Technologies (Ukraine)..................cccceenne.... 454

746

